• Sreepat Jain
Part of the Springer Geology book series (SPRINGERGEOL)


The recent discovery of a 750 million years old sponge-like organism, Otavia antiqua [Figs. 2.2(1–5)], a calcareous sponge with Ca-based skeleton, from the Cryogenian–Ediacaran successions of Namibia (South Africa) makes sponges the oldest living animal (Brain et al. 2012; Maloof et al. 2010) [Figs. 2.2(6, 7)].


Skeletal Element Siliceous Sponge Calcareous Sponge Axial Canal Sponge Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bergquist, P. 1998. Porifera. In Invertebrate zoology, ed. D. Anderson, 10–27. USA: Oxford University Press.Google Scholar
  2. Boardman, R.S., Cheetham, A.H. and A.J. Rowell. eds. 1992. Fossil invertebrates. Wiley, New York.Google Scholar
  3. Borchiellini, C., M. Manuel, E. Alivon, N. Boury-Esnault, J. Vacelet, and Y. Le Parco. 2002. Sponge paraphyly and the origin of Metazoa. Journal of Evolutionary Biology 14(1): 171–179.CrossRefGoogle Scholar
  4. Boury-Esnault, N., and K. Rützler. 1997. Thesaurus of sponge morphology. Smithsonian Contributions to Zoology 596: 1–55.CrossRefGoogle Scholar
  5. Brain, C.K., Prave, A.R., Hoffmann, K.H. et al. 2012. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. South Africa Journal of Science 108(1/2), Art. #658.  10.4102/sajs.v108i1/2.658.
  6. Butler, P. 1962. Morphologic classification of sponge spicules, with descriptions of siliceous spicules from the Lower Ordovician Bellefonte Dolomite in central Pennsylvania. Journal of Paleontology, 191–200.Google Scholar
  7. Carrera, M.G., and J.P. Botting. 2008. Evolutionary history of Cambrian spiculate sponges: implications for the Cambrian evolutionary fauna. Palaios 23: 124–138.CrossRefGoogle Scholar
  8. Clarkson, E.N.K. 1993. Invertebrate palaeontology and evolution. London: Chapman and Hall. 434 p.Google Scholar
  9. De Laubenfels, M. 1955. Porifera. Treatise on Invertebrate paleontology, 21–112. Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  10. De Vos, L., Ruetzler, K., Boury-Esnault, N., Donadey, C. and J. Vacelet. 1992. Atlas of sponge morphology. Atlas de morphologie des Èponges. Washington and London: Smithsonian Institution Press.Google Scholar
  11. Debrenne, F. and J. Vacelet. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? In 4th international symposium on fossil Cnidaria, New York, 358–369.Google Scholar
  12. Debrenne, F. 2007. Lower Cambrian archaeocyathan bioconstructions. Comptes Rendus Palevol, Paris 6(1–2): 5–19.CrossRefGoogle Scholar
  13. Dohrmann, M., C. Göcke, D. Jannussen, J. Reitner, C. Lüter, et al. 2012. Systematics and spicule evolution in dictyonal sponges (Hexactinellida: Sceptrulophora) with description of two new species. Zoological Journal of the Linnean Society 163: 1003–1025.CrossRefGoogle Scholar
  14. Gehling, J.G., and J.K. Rigby. 1996. Long expected sponges from the neoproterozoic ediacara fauna of South Australia. Journal of Paleontology 2: 185–195.CrossRefGoogle Scholar
  15. Hooper, J.N.A. 1991. Revision of the family Raspailiidae (Porifera: Demospongiae), with description of Australian species. Invertebr. Taxon. 5(6): 1179–1418.Google Scholar
  16. Hooper, J.N.A. and R.W.M. Van Soest. 2002. Systema Porifera. A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York, (2 vols.) 1708 p.Google Scholar
  17. Hooper, J.N.A., and F. Wiedenmayer. 1994. Porifera. In Zoological catalogue of Australia, edited by Wells, A., Vol. 12, 1–620.Google Scholar
  18. Kerner, A., Vignes-Lebbe, R. and F. Debrenne. 2012. Computer-aided identification of the Archaeocyatha genera now available online. Carnets de Géologie / Notebooks on Geology, Brest, Letter 2011/02 (CG2011_L02), pp. 99–102.Google Scholar
  19. Levi, C., Barton, J., Guillemet, C., Bras, E., Lehuede, P. 1989. A remarkably strong natural glassy rod: the anchoring spicule of theMonorhaphis sponge. Journal of Materials Science Letters 8: 337–339.Google Scholar
  20. Love, G. D., Grosjean, E., Stalvies, C., et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457: 718–722.Google Scholar
  21. Maldonado, M., Carmona, M.G., Uriz, M.J. and A. Cruzado. 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401: 785–788.Google Scholar
  22. Maloof, A., Rose, C., Beach, R., Samuels, B., Calmet, C., Erwin, D., Poirier, G., Yao, N., and F. Simons. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience. doi: 10.1038/ngeo934.
  23. May, A. 2008. Corals (Anthozoa, Tabulata and Rugosa) and chaetetids (Porifera) from the Devonian of the Semara area (Morocco) at the Museo Geominero (Madrid, Spain) and their biogeographic significance: Bulletin dell’Institut Scientifique Rabat, Section Sciences de la Terre 30: 1–12.Google Scholar
  24. Muller, W.E.G. 2003. Sponges (Porifera), Springer, Berlin, 258 p.Google Scholar
  25. Philippe, H., Derelle, R., Lopez, P., et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Current Biology 19: 706–712.Google Scholar
  26. Pick, K.S., Philippe, H., Schreiber, F., et al. 2010. Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Molecular Biology Evolution 27: 1983–1987.Google Scholar
  27. Rigby, J.K., Budd, G.E., Wood, R.A., and F. Debrenne. 1993. Porifera. In The fossil, record edited by Benton, M.J., Vol. 2, 71–99. Chapman and Hall, London.Google Scholar
  28. Sperling, E. A., Robinson, J. M., Pisani, D., and K.J. Peterson. 2010. Where’s the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200‐Mry missing Precambrian fossil record of siliceous‐sponge spicules. Geobiology 8: 24–36.Google Scholar
  29. Suchy, D.R., and R.R. West. 2001. Chaetetid buildups in a Westphalian (Desmoinesian) cyclothem in Southeastern Kansas: Palaios 16(5): 425–443.Google Scholar
  30. Uriz, M., Turon, X., Becerro, M., and G. Agell. 2003. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique 62: 279–378.Google Scholar
  31. Van Soest, R.W.M. 1991. Demosponge Higher Taxa Classification Re-Examined. In J. Reitner, H. Keupp (eds), Fossil and Recent Sponges. Springer-Verlag, Berlin, Heidelberg: 54–71.Google Scholar
  32. Van Soest, R.W.M., Van Kempen, T.M.G., and J.-C. Braekman, eds. 1994. Sponges in time and space. In Proceedings of the 4th international sponge symposium, 515 p. Balkema: Rotterdam.Google Scholar
  33. Wang, X., Schroder, H., and W. Muller. 2009. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. International Review of Cell and Molecular Biology 273: 69–184.Google Scholar
  34. Zhuravleva, I.T. 1960. Arkheotsiaty Sibirskoy Platformy (Archaeocyaths of the Siberian Platform). Akademiya Nauk SSSR, Moscow, 344 p.Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.New DelhiIndia

Personalised recommendations