On the Computation of Symmetrized M-Estimators of Scatter

  • Jari Miettinen
  • Klaus Nordhausen
  • Sara Taskinen
  • David E. Tyler
Conference paper


This paper focuses on the computational aspects of symmetrized M-estimators of scatter, i.e., the multivariate M-estimators of scatter computed on the pairwise differences of the data. Such estimators do not require a location estimate, and more importantly, they possess the important block and joint independence properties. These properties are needed, for example, when solving the independent component analysis problem. Classical and recently developed algorithms for computing the M-estimators and the symmetrized M-estimators are discussed. The effect of parallelization is considered as well as new computational approach based on using only a subset of pairwise differences. Efficiencies and computation time comparisons are made using simulation studies under multivariate elliptically symmetric models and under independent component models.


Maximum Likelihood Estimator Independent Component Analysis Pairwise Difference Multivariate Normal Distribution Scatter Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Academy of Finland under Grants 251965, 256291, and 268703. David Tyler’s work for this material was supported by the National Science Foundation under Grant No. DMS-1407751. We thank Dr. Seija Sirkiä for providing us the asymptotic relative efficiencies of the symmetrized estimators. The authors are grateful to the reviewers for their helpful comments.


  1. Blom G (1976) Some properties of incomplete \(U\)-statistics. Biometrika 63(3):573–580MathSciNetCrossRefMATHGoogle Scholar
  2. Brown BM, Kildea DG (1978) Reduced \(U\)-statistics and the Hodges-Lehmann estimator. Ann Stat 6(4):828–835. doi: 10.1214/aos/1176344256 MathSciNetCrossRefMATHGoogle Scholar
  3. Croux C, Rousseeuw PJ, Hössjer O (1994) Generalized S-estimators. J Am Stat Assoc 89:1271–1278MathSciNetCrossRefMATHGoogle Scholar
  4. Davies PL (1987) Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices. Ann Stat 15:1269–1292MathSciNetCrossRefMATHGoogle Scholar
  5. Dümbgen L (1998) On Tyler’s M-functional of scatter in high dimension. Ann Inst Stat Math 50:471–491CrossRefMATHGoogle Scholar
  6. Dümbgen L, Nordhausen K, Schuhmacher H (2014) fastM: Fast computation of multivariate M-estimators. http://CRAN.R-project.org/package=fastM, R package version 0.0-2
  7. Dümbgen L, Pauly M, Schweizer T (2015) M-functionals of multivariate scatter. Stat Surv 9:31–105MathSciNetCrossRefMATHGoogle Scholar
  8. Dümbgen L, Nordhausen K, Schuhmacher H (2016) New algorithms for M-estimation of multivariate location and scatter. J Multivar Anal 144:200–217CrossRefMATHGoogle Scholar
  9. Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefMATHGoogle Scholar
  10. Kent JT, Tyler DE (1991) Redescending \(M\)-estimates of multivariate location and scatter. Ann Stat 19(4):2102–2119MathSciNetCrossRefMATHGoogle Scholar
  11. Lopuhaä H (1989) On the relation between S-estimators and M-estimators of multivariate location and covariance. Ann Stat 17:1662–1683MathSciNetCrossRefMATHGoogle Scholar
  12. Maronna RA (1976) Robust M-estimators of multivariate location and scatter. Ann Stat 4:51–67MathSciNetCrossRefMATHGoogle Scholar
  13. Maronna RA, Martin DR, Yohai VJ (2006) Robust statistics: theory and methods. Wiley, Wiley Series in Probability and StatisticsGoogle Scholar
  14. Nordhausen K, Oja H (2011) Scatter matrices with independent block property and ISA. In: Proceedings of 19th European Signal Processing Conference 2011 (EUSIPCO 2011), pp 1738–1742Google Scholar
  15. Nordhausen K, Tyler DE (2015) A cautionary note on robust covariance plug-in methods. Biometrika 102:573–588MathSciNetCrossRefMATHGoogle Scholar
  16. Nordhausen K, Oja H, Ollila E (2008) Robust independent component analysis based on two scatter matrices. Austrian J Stat 37:91–100Google Scholar
  17. Nordhausen K, Sirkiä S, Oja H, Tyler DE (2012) ICSNP: tools for multivariate nonparametrics. http://CRAN.R-project.org/package=ICSNP, R package version 1.0-9
  18. Oja H, Sirkiä S, Eriksson J (2006) Scatter matrices and independent component analysis. Austrian J Stat 35:175–189Google Scholar
  19. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  20. Roelant E, Van Aelst S, Croux C (2009) Multivariate generalized S-estimators. J Multivar Anal 100:876–887MathSciNetCrossRefMATHGoogle Scholar
  21. Rousseeuw PJ (1985) Multivariate estimation with high breakdown point. In: Grossmann W, Pflug G, Vincze I, Wertz W (eds) Mathematical methods and applications, vol B. Reidel, Dordrecht, Netherlands, pp 283–297Google Scholar
  22. Sirkiä S, Taskinen S, Oja H (2007) Symmetrised M-estimators of scatter. J Multivar Anal 98:1611–1629MathSciNetCrossRefMATHGoogle Scholar
  23. Tyler DE (1987) A distribution-free M-estimator of multivariate scatter. Ann Stat 15:234–251MathSciNetCrossRefMATHGoogle Scholar
  24. Tyler DE, Critchley F, Dümbgen L, Oja H (2009) Invariant co-ordinate selection. J Roy Stat Soc Series B 71:549–595MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Jari Miettinen
    • 1
  • Klaus Nordhausen
    • 2
    • 3
  • Sara Taskinen
    • 1
  • David E. Tyler
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of JyvaskylaJyvaskylaFinland
  2. 2.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  3. 3.School of Health SciencesUniversity of TampereTampereFinland
  4. 4.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations