Skip to main content

Stabilization of Prey Predator Model via Feedback Control

  • Conference paper
  • First Online:
Applied Analysis in Biological and Physical Sciences

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 186))

  • 890 Accesses

Abstract

In this paper, the effect of feedback linearization in Leslie–Gower type prey-predator model with Holling-type IV functional response is investigated. It is shown that the closed loop system may be stabilized using either approximate or exact linear approach. The former approach uses a linear control variable to provide a feedback linearization law whereas in latter approach, state space coordinates are suitably changed. Using this feedback control, a complex non-linear system is reduced to a linear controlled system that yields a globally asymptotically stable equilibrium point. Finally Analytical findings are validated through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrievskii, B.R., Fradkov, A.L.: Control of chaos: methods and applications. I. Methods. Autom. Remote Control 64, 673–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braza, P.A.: The bifurcation structure of the Holling–Tanner model for predator-prey interactions using two-timing. SIAM J. App. Math. 63, 889–904 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collings, J.B.: The effects of the functional response on the bifurcation behavior of a mite predator-prey interactionmodel. J. Math. Biol. 36, 149–168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Dekker, New York (1980)

    MATH  Google Scholar 

  5. Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Num. Simul. 17, 914–929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Holling, C.S.: Principles of insect predation. Ann. Rev. Entomol. 6, 163–182 (1961)

    Article  Google Scholar 

  7. Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. App. Math. 55, 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, J., Song, Y.: Stability and bifurcation analysis of a delayed Leslie–Gower predator-prey system with nonmonotonic functional response. Abstract App. Anal. 2013, Article ID 152459, 19 p

    Google Scholar 

  9. Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator-prey models. App. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrica 47, 219–234 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrica 35, 213–245 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Xiao, D.: Bifurcations of a predator-prey system of Holling and Leslie types. Chaos Sol. Frac. 34, 606–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lian, F., Xu, Y.: Hopf bifurcation analysis of a predator-prey system with Holling type-IV functional response and time delay. Appl. Math. Comput. 215, 1484–1495 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Liu, X., Zhang, Q., Zhao, L.: Stabilization of a kind of prey-predator model with holling functional response. J. Syst. Sci. Complex. 19, 436–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  16. Murray, J.D.: Mathematical Biology: I. An Introduction. Springer, New York (2002)

    MATH  Google Scholar 

  17. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Singh, A., Gakkhar, S.: Stabilization of modifed Leslie–Gower prey-predator model. Differ. Equ. Dyn. Syst. 22, 239–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sokol, W., Howell, J.A.: Kinetics of phenol exidation by washed cells. Biotechnol. Bioeng. 23, 2039–2049 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuraj Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Singh, A. (2016). Stabilization of Prey Predator Model via Feedback Control. In: Cushing, J., Saleem, M., Srivastava, H., Khan, M., Merajuddin, M. (eds) Applied Analysis in Biological and Physical Sciences. Springer Proceedings in Mathematics & Statistics, vol 186. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3640-5_10

Download citation

Publish with us

Policies and ethics