• Vinod Kumar Khanna
Part of the NanoScience and Technology book series (NANO)


A new generation of extra-ordinarily sensitive, fast-response devices utilizing the distinctive properties of nanomaterials or modulation of characteristics of nanoelectronic devices is described. Besides their ultrahigh sensitivities, these nanosensors exhibit much lower detection limits than their microscopic competitors. In these nanomaterials and nanosize sensing devices, the relevant analyte molecules bind with the functionalized surfaces of the concerned nanostructures, producing changes in the properties of materials or altering the characteristics of devices in accordance with the concentration of the target biomolecules. These molecular bindings constitute the basis for specificity in the detection of biological and chemical species. Perspectives of nanosensors based on gold nanoparticles, magnetic nanoparticles, quantum dots, carbon nanotubes, silicon nanowires, and nanocantilevers are sketched.


Surface Plasmon Resonance Gold Nanoparticles Glassy Carbon Electrode Magnetic Nanoparticles Localize Surface Plasmon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14(4):331–341CrossRefGoogle Scholar
  2. 2.
    Zeng S, Yu X, Law W-C et al (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens Actuators, B 176:1128–1133CrossRefGoogle Scholar
  3. 3.
    Wang JL Munir A, Li ZH et al (2009) Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens Bioelectron 25(1):124–129Google Scholar
  4. 4.
    He L, Musick MD, Nicewarner SR et al (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122(38):9071–9077CrossRefGoogle Scholar
  5. 5.
    Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7):1599–1603CrossRefGoogle Scholar
  6. 6.
    Lin T-J, Huang K-T, Liu C-Y (2006) Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 22:513–518CrossRefGoogle Scholar
  7. 7.
    Xu Q, Mao C, Liu N-N et al (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan–gold nanoparticle nanocomposite. Biosens Bioelectron 22:768–773CrossRefGoogle Scholar
  8. 8.
    Haun JB, Yoon T-J, Lee H et al (2010) Magnetic nanoparticle biosensors, WIREs Nanomedicine and Nanobiotechnology, © 2010 John Wiley & Sons, Inc., 15 ppGoogle Scholar
  9. 9.
    Perez M, Josephson L, O’Loughlin T et al (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820CrossRefGoogle Scholar
  10. 10.
    Huang X, Li L, Qian H et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem 45(31):5140–5143 DongGoogle Scholar
  11. 11.
    Zhang C-Y, Yeh H-C, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831CrossRefGoogle Scholar
  12. 12.
    Xia Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20:1–8CrossRefGoogle Scholar
  13. 13.
    Medintz IL, Stewart MH, Trammell SA et al (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 9:676–684CrossRefGoogle Scholar
  14. 14.
    Liu X, Freeman R, Golub E et al (2011) Chemiluminescence and Chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5(9):7648–7655CrossRefGoogle Scholar
  15. 15.
    Deo RP, Wang J, Block I et al (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530(2):185–189CrossRefGoogle Scholar
  16. 16.
    Tang H, Chen J, Yao S et al (2004) Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 331(1):89–97CrossRefGoogle Scholar
  17. 17.
    Su S, He Y, Zhang M et al (2008) High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Appl Phys Lett 93(2), Article ID 023113Google Scholar
  18. 18.
    Yan Q, Wang Z, Zhang J et al (2012) Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim Acta 61:148–153CrossRefGoogle Scholar
  19. 19.
    Gao A, Lu N, Wang Y et al (2012) Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett 12(10):5262–5268CrossRefGoogle Scholar
  20. 20.
    Chen W-Y, Chen H-C, Yang Y-S et al (2013) Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens Bioelectron 41:795–801CrossRefGoogle Scholar
  21. 21.
    Su S, Wei X, Zhong Y et al (2012) Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano 6(3):2582–2590CrossRefGoogle Scholar
  22. 22.
    Han SW, Lee S, Hong J et al (2013) Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays. Biosens Bioelectron 45:129–135CrossRefGoogle Scholar
  23. 23.
    Zhang B, Wang H, Lu L et al (2008) Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv Funct Mater 18(16):2348–2355CrossRefGoogle Scholar
  24. 24.
    Synder P, Joshi A, Serna JD (2014) Modeling a nanocantilever-based biosensor using a stochastically perturbed harmonic oscillator. Int J Nanosci 13(2):1450011, 8 ppGoogle Scholar
  25. 25.
    Hsieh S, Hsieh S-L, Hsieh C-W et al (2013) Label-free glucose detection using cantilever sensor technology based on gravimetric detection principles. J Anal Methods Chem 2013, Article ID 687265, 5 ppGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.MEMS and Microsensors GroupCSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations