Advertisement

New Empirical Evidences on Decision Making and Cognition

  • Sisir RoyEmail author
Chapter

Abstract

Recently, series of experiments have been performed with human subjects where the law of addition of probabilities in classical probability theory has been shown to be invalid within the context of decision making in the cognitive domain. These results are classified into six different categories. The concept of quantum probability has been introduced to explain the data, but so far, no quantum mechanical framework has been proposed at the anatomical level of the brain. Quantum probability is used in the more abstract sense without considering the concept of elementary particles or the Planck constant, etc. In a sense, this concept of quantum probability can be used in any branch of knowledge. However, it is necessary to understand how it can be contextualized in the case of the neuronal architecture of the brain. It is worth mentioning that the non-commutative structure in the quantum paradigm has been shown to be valid in the visual architecture of human brain. The uncertainty relation similar to Heisenberg uncertainty relation has been found to operate in the visual cortex. This sheds new light on understanding the data found in the case of ambiguous figures within the above six categories.

Keywords

Uncertainty relation Disjunction effect Non-commutativity Ambiguous figures Contextualization Quantum probability 

References

  1. Accardi, L. (2006); ”Could one now convince Einstein? In quantum theory reconsideration of Foundations”; 3: G. Adenier, et.al. (Eds.); American Inst. of Physics;Ser.Conf.Procd.;810, Melville.N.Y.,3-18.Google Scholar
  2. Aerts, D. & Aerts, S. (1994); Foundations of Science; 1;85-97.Google Scholar
  3. Aerts, D. et al (2009); - PLoS Genet. 5(1): e1000351. FlyBase Identifier, FBrf0206745.Google Scholar
  4. Aerts, D. (2009) Journal of Mathematical Psychology; 53(5); 314-348.Google Scholar
  5. Arshavsky Yuri I. (2003); Brain & Mind; 4(3);327-339.Google Scholar
  6. Atmanspacher, H., Filk, T. & Romer,H. (2004) Biological Cybernetics; 90(1); 33-40.Google Scholar
  7. Atmanspacher, H., Romer, H., & Wallach, H. (2006); Foundations of Physics; 32; 379-406.Google Scholar
  8. Atterneve, F. (1971) Scientific American;225;62.Google Scholar
  9. Barbieri, D., Citti, G. et al (2010); An uncertainty principle underlying the pinwheel structure in the [math-phys] primary visual cortex: ([ arxiv:1007.1395v1,[ Math-ph],8 July.
  10. Ben-Shahar, O. & Zucker, S. (2004) Neural Computation; 16(3);445-476Google Scholar
  11. Blutner, R. (2009); “Concepts and bounded rationality: An application of Niestegge’s approach to conditional quantum probabilities”. In L. Accardi, G. Adenier, C. Fuchs, G. Jaeger, A.Y. Khrennikov, J. Larsson, & S. Stenholm (Eds.), Foundations of probability and physics- 5 (Vol. 1101).Google Scholar
  12. Bohnoeffer, T & Grinvald, A. (1991); Nature; 353(6343); 429-31.Google Scholar
  13. Bolduc, E., Leach, J. et al (2014); PNAS, 111(34), 12337–12341, Fair sampling perspective on an apparent violation of duality; Ed. Peter J. Rossky; doi: 10.1073/pnas.1400106111
  14. Borsellino, A., Carlini, F., et al. (1982) Perception; 11; 263–273.Google Scholar
  15. Busemeyer, J.R., Wang, Z., et al. (2006) Journ. Mathematical Psychology; 50; 220-241.Google Scholar
  16. Busemeyer, J.R., Wang, Z. & Lambert-Mogiliansky (2009) Journ. Math. Psychology; 53; 423-433.Google Scholar
  17. Busemeyer, J.R. et al. (2011); Psychological Review; 118; (2); 193-218.Google Scholar
  18. Busemeyer, J. R. & Bruza, P. (2012); Quantum models of cognition and decision making;Cambridge, UK: Cambridge University Press.Google Scholar
  19. Busemeyer, J.R., Pothos, E.M. et al (2011) Phys Rev.; 118(2);193-218.Google Scholar
  20. Busch, P. & Lahti, P.J. (1984) Phys. Rev; D 29; 1634.Google Scholar
  21. Brainerd, C.J. & Reyna, V.F. (1988) Journal of Memory & language; 58; 765-786.Google Scholar
  22. Bresslo, P.C., Cowan, J.D. et al. (2001) Philosophical Transactions of the Royal Society of London; Series B: Biological Sciences; 356(1407);299-330.Google Scholar
  23. Bresslo, P.C. & Cowan, J.D. (2003); Philosophical transactions of the Royal Society of London. Series B: Biological sciences; 358(1438); 1643-1667.Google Scholar
  24. Carlson, B.W. & Yates, J.F. (1989) Organizational behavior & human decision processes;44;368-379.Google Scholar
  25. Carruthers, P. & Nieto, N.M. (1968) Reviews of Modern Physics; 40(2);411-440.Google Scholar
  26. Citti, G. & Sarti, A. (2006) Journal of Mathematical Imaging and Vision; 24(3);307-326.Google Scholar
  27. Cohen, Leon (1966); J. Math. Phys.; 7;781.Google Scholar
  28. Cohen Leon (1989); Procd.IEEE; 77(7); 941-961.Google Scholar
  29. Cohen-Tannoudji, C., Diu, B. & Laloe, F. (1978); “Quantum Mechanics”; John Wiley & Sons.Google Scholar
  30. Conte, E., Khrennikov, A., Todarello, O., Federici, A. et al (2009) Open Systems and Information Dynamics; 16; 1-17.Google Scholar
  31. Daugman, J.G. (1985) J. Opt. Soc. Am. A. 2(7);1160-1169.Google Scholar
  32. DeBrioglie, Luis (1924) Recherches sur la theorie des Quanta (University of Paris); (Eng translation:. “Phase Waves of Louis deBroglie”) (1972); Am. J. Phys.; 40(9); 1315-1320.Google Scholar
  33. DeValois, R. Feldman, J.M. & Lynch, J.G. (1988) Journ.Applied psychology; 73(3);421-435.Google Scholar
  34. Duits, R. et al. (2007) Int. Journ. Comp. Vision; 72(1); 79-102.Google Scholar
  35. Einstein Albert (1905) Annalen der Physik; 17; 132-148.Google Scholar
  36. Einstein Albert (1905) Explanation of the photoelectric effect with use of the quantum hypothesis of Planck. Light is a flow of corpuscular objects with definite energies-Planck’s quanta of energy. http://einsteinpapers.press.princeton.edu/vol2-trans/100.
  37. Feldman, M. & Lynch, J.G. (1981) Journal of Applied Psychology; 66; 127-148.Google Scholar
  38. Feynman, R. (1951) The concept of Probability in quantum mechanics; www.johnboccio.com/research/quantum/notes/Feynman-Prob.pdf
  39. Folland, G. (1989); Harmonic analysis on phase space; Princeton University Press.Google Scholar
  40. Franken, E. & Duits, R. (2009); International Journal of Computer Vision; 85(3);253-278.Google Scholar
  41. Gabor, D. (1946) J. IEE, London; 93; 429–457.Google Scholar
  42. Gibson, J.J. (1950); “The perception of the visual world”; Boston M A;Houghton Miffin.Google Scholar
  43. Griffiths, Thomas L. et al., (2010) Trends in Cognitive Sciences; 14(8); 357-364.Google Scholar
  44. Hampton, J. A. (1988)(a) Learning, Memory & Cognition; 16; 579‐591.Google Scholar
  45. Hampton, J. A. (1988)(b) Journ. Exp. Psychology: Learning, Memory, and Cognition; 14; 12‐32.Google Scholar
  46. Hampton, J.A. (2013); “Conceptual combination: extension and intension; Commentary on Aerts, Gabora & Sozzo”; Topics in Cognitive Science: Special Issue”; Modelling with Quantum Probability.Google Scholar
  47. Heisenberg, W. (1969); “ Der Teil und das das Ganze; Gesprache im Umkreis der Atomphysik”. Munich, Germany: R. Piper, 1969.Google Scholar
  48. Horitz, K.L. & O’Leavy (1993) Perception and Psychophysics; 53; 668.Google Scholar
  49. Huyghens, Christiaan (1690); Trail de la lumiere.Google Scholar
  50. Heisenberg, W. (1969); “The physical principles of the quantum theory’; Dover, New York.Google Scholar
  51. Hubel, D. & Wiesel, T. N. (1962) J. Physiol; 160; 106–154.Google Scholar
  52. Hubel, D.H. & Wiesel, T.N. (1977) Royal Society of London Proceedings Series B, 198:1–59.Google Scholar
  53. Isham, C.J. & Klauder, J.R. (1991) Journ. Math. Phys.; 32(3):607-620.Google Scholar
  54. Khrennikov, A. Y. (2010). Ubiquitous quantum structure:From psychology to finance; Berlin: Springer-Verlag.Google Scholar
  55. Kohler, W. (1940) Dynamics in Psychology; New York, Liveright.Google Scholar
  56. Menzel, R., Puhlman, D. et al. (2012); Procd. National Acad. Science; 109(14); 9314-9319.Google Scholar
  57. Mortimer, D., Feldner, J., et al (2009) Proc.Natl.Acad.Sci.,USA,106, 10296–10301Google Scholar
  58. Moore, D.W. (2002) Public opinion Quarterly; 66;80-91.Google Scholar
  59. Necker, L.A. (1832) Philosophical Magazine;3;329.Google Scholar
  60. Oaksford, M. & Chatter, N. (2007); Bayesian rationality: The probabilistic approach to human reasoning; Oxford: Oxford University Press.Google Scholar
  61. Ohki, K., Chung, P. Kara (2006) Nature; 442(7105); 925-928.Google Scholar
  62. Pothos, E. M. & Busemeyer, J. R. (2009) Procd. of the Royal Society B: Biological Sciences; 276(1665);2171-2178.Google Scholar
  63. Pothos, E. M. & Busemeyer, J. R. (2013) Behavioral and Brain Sciences; 36(3); 255-274.Google Scholar
  64. Roy, Sisir, Kundu, M. & Granlund G. (1996); Information sciences;89;193-209.Google Scholar
  65. Sarti, A., Citti, G. & Petitot, J. (2008) Biological Cybernetics; 98(1);33-48.Google Scholar
  66. Schwarz, Nobert et al. (2007) Advances in Experimental social Psychology, Vol 39; Elsevier Inc.Google Scholar
  67. Savage, L. J. (1954); The foundations of statistics; Wiley.Google Scholar
  68. Shafir, E., Simonson, I. & Tversky, A. (1993) Cognition; 49(1-2);11-36; [aHM]Google Scholar
  69. Swindale, N.V. (1996); The development of topography in the visual cortex: a review of models. Network (Bristol, England); 7(2):161-247.Google Scholar
  70. Toppino, T.C., Long, G.M. (1987) Perception and Psychophysics;42;370.Google Scholar
  71. Tourangeau, R., Rips, L. J., & Rasinski, K. A. (2000) The psychology of survey response; Cambridge University Press.Google Scholar
  72. Tourangeau, R., Rasinski, K.A. & Bradburn, N. (1991);Public Opinion Quarterly; 55;255-266.Google Scholar
  73. Townsend, J. T.; Silva, K. M.; et al (2000) Pragmatics and Cognition; 8; 83- 105.Google Scholar
  74. Turvey, M. (1977) Psychological Review; 84;67.Google Scholar
  75. Tversky, A. & Kahneman, D. (1983) Psychological Review; 90(4);293– 315.Google Scholar
  76. Tversky, A. & Shafir, E. (1992) Psychological sciences;3;(6);358-361.Google Scholar
  77. Tversky, A. & Shafir, E. (1992) Psychological Science; 3(5); 305 – 309.Google Scholar
  78. Wang, Z., Busemeyer, J. R., Atmanspacher, H., & Pothos, E. (2013) Topics in Cognitive Science;5(4), 672-688.Google Scholar
  79. Wilson, R. and H. Knutsson, H. (1988) IEEE Trans., SMC; 18; 305.Google Scholar
  80. White, Lee, C. et al (2013); A quantum probability perspective on the nature of psychological uncertainty; Procd. 35th Ann. conf. cogn. Sci. society; 1599-1604.Google Scholar
  81. Williams, P. & Aaker, J.L. (2002) Journal of Consumer Research; 28(4); 636-649.Google Scholar
  82. Wolf, F & Geisel, T. (1998) Nature; 395(6697):73-78.Google Scholar
  83. Wolfe M. et al (1969) Sensation and Perception, Fourth Edition, Sinauer Associates, Chapter 3, Activity 3.5.Google Scholar
  84. Wootters, W.K., Zurek, W.H. (1982) Phys Rev D; Part Fields; 121;580–590.Google Scholar
  85. Zweck, J & Williams, L.R. (2004) Journ. Math. Imaging and Vision; 21 (2);135-154.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.National Institute of Advanced Studies, IISc CampusBengaluruIndia

Personalised recommendations