Predictability of Brain and Decision Making

  • Sisir RoyEmail author


The central issue in brain function is to understand how the internalization of the properties of the external world is realized within an internal functional space. By the term “internalization” of the properties, we mean the ability of the nervous system to fracture external reality into sets of sensory messages; the next task of this process is to simulate such reality in brain reference frames. As stated earlier, the concept of functional geometry has been proposed by Pellionisz and Llinas, and then developed further by Roy and Llinas as probabilistic dynamic geometry to understand the internal functional space and its correspondence with the external world. A central challenge concerning present-day neuroscience is that of understanding the rules for embedding of ‘universals’ into intrinsic functional space. The arguments go as follows: “if functional space is endowed with stochastic metric tensor properties, then there will be a dynamic correspondence between the events in the external world and their specification in the internal space.” The predictability of the brain is closely related to dynamic geometry where Bayesian probability has been shown to be necessary for understanding this predictability. In Bayesian statistics, prior knowledge about the system is assumed. The fundamental question regarding the CNS function is “where is the origin of such prior knowledge”, and the answer is basically simple: the morpho-functional brain network is initially inherited and then honed by use. In fact, the origin of a Bayesian framework can be traced to Helmholtz’s (1867) idea of perception. It was Helmholtz who first realized that retinal images are ambiguous and prior knowledge is necessary to account for visual perception.


Dynamic geometry Predictability Functional space Internalisation Bayesian probability 


  1. Arbib M.A.(2007) Clinical Neuropsychiatry 4(5-6): 208-222Google Scholar
  2. Berstein, N.A. (1967); The coordination and regulation of the movement; Oxford, U.K., Pergamon Press.Google Scholar
  3. Bhattacharya, S., Gelfand, A.E. & Holsinger, K.E. (2007); Stat. Comput.;17, 193-208.Google Scholar
  4. Clark A, Chalmers D (1998). Analysis; 58:7–19.Google Scholar
  5. Clark, A. (2008); Supersizing the Mind; Embodiment, Action, and Cognitive Extension, Oxford University Press.Google Scholar
  6. Cox, R.T. (1946) Am.Journ.Phys., 17, 1-13.Google Scholar
  7. Diedrichsen Jörn et al (2009) A probabilistic MR atlas of the human cerebellum; doi:10.1016/j. neuroimage.2009.01.045Google Scholar
  8. Die d Richen, Reza Shadmeher et al; (2002); TICH,834.Google Scholar
  9. Emauael, T & Jordon, I. Michael (2002); Nature Neuroscience 5, 1226 – 1235.Google Scholar
  10. Erimaki, S. & Christakos, C. N. (2008); Coherent motor unit rhythms in the (6-10 Hz) range during time-varying voluntary muscle contractions: Neural mechanism and relation to Rhythmical Motor Control,Neurolophysiol,99, 473-483.Google Scholar
  11. Evan Thompson and Mog Stapleton (2008) Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories; Springer online, 20 December.Google Scholar
  12. Farmer, S. F. (1998). Journal of Physiology 509(1), 3-14; ibid; Farmer, S,F. (2004); Control of human movement; The journ. of Physiology, 517(1); Article first published online 8 Sep.; (2004).Google Scholar
  13. Freedman, D.A. (1995); Some issues in the foundation of statistics; Found.Sci., 1, 19-83.Google Scholar
  14. Goldman, MS (2000); “Computational Implications of Activity-dependent neuronal processes; Harvard Univ”; Ph.D. Thesis.Google Scholar
  15. Goodman, D.A. & Kelso, J.A.(1983); Exploring the functional significance of physiological tremor: a biospectroscopic approach; Exp. Brain Res., 49, 419-431.Google Scholar
  16. Greene, P.H. (1982); Why it is easy to control your arms?; Journ. Motor Behav., 14, 260-286.Google Scholar
  17. Grillner Hamburger Victor (1963) Quarterly Rev. of Biol.,39, 342-365.Google Scholar
  18. Heijden, J. Van der, Shedmehr Reza; (1992); TICS-834.Google Scholar
  19. Helmholtz, H. Von (1855/1903); “Ueber das Sehen des Menschen’’, in Vortra « ge und Reden (Braunschweig: Vieweg); 85 – 117; ibid; Helmholtz, Von Hermann (1867); “(Handbuch der physiologischen Optik”, Leipzig: Voss: “Treatise on Physiological Optics” (1920-25);ibid; (1878/1903); “Die Tathsachen in der Wahrnehmung’’, in Vortra «ge und Reden (Braunschweig: Vieweg), 213 – 247.Google Scholar
  20. Hommel, B., Jochen Müsseler, J. (2001); Behavioral and Brain Sciences; 24, 849–937.Google Scholar
  21. Jaynes, E.T. (1986) Bayesian Methods; General background: Cambridge. U.K., Cambridge University Press.Google Scholar
  22. Joliot J.M., Ribary U., & Llinás R. (1994) Proc. Natl Acad. Sci.; USA. 1994; 91:11;748–751. (doi: 10.1073/pnas.91.24.11748).
  23. Kondepudi, D. & Prigogine, I. (1998) Modern Thermodynamics, Wiley, New York.Google Scholar
  24. Körding, K.P, Tenenbaum, J.B & Shadmehr, R. (2007); Nature Neuroscience, 10, 779-786.Google Scholar
  25. Kӧrding, K.P. (2007); Review, Science, 318, 606-610.Google Scholar
  26. Klagge, J.C. (1999); Wittgenstein on Non-mediative causality; Journ. History of Philosophy; 37(4), 653-667.Google Scholar
  27. Livesey, P. J. (1986)Learning and Emotion: A Biological Synthesis; Vol.1of Evolutionary Processe; Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
  28. Llinás, Rodolfo (1987); Mindness as a functional state of the brain: inMind waves”; (eds.) C. Blackmore & S. A. Greenfield (Eds.), pp. 339–358). Oxford, England:Google Scholar
  29. Llinás R. R. (1988) Science. 242; pp.1654–1664.Google Scholar
  30. Llinas, R., Leznik, E. & Makarenko, V. (2004) IEE. J. 29; pp. 631-639.Google Scholar
  31. Mackay, D.J.C. (2003); Information Theory, Inference and learning algorithms; Cambridge Univ. Press.Google Scholar
  32. Makarenko, V. & Llina‘s, R. (1998) Proc .Natl. Acad. Sci. U S A,  95, pp. 15747–15752.Google Scholar
  33. Markus F., Peschl, M.F. & Riegler, A.(1999); Understanding Representation in the Cognitive Sciences; (Eds: A. Riegler, M. Peschl, & A. von Stein); Kluwer Academic/Plenum Publishers, New York, 1.Google Scholar
  34. Maturana, H.R. & Varela F.J. (1980); Autopoiesis and cognition: The realization of the living, Springer.Google Scholar
  35. Maturana, U. (2000); Steps to an Ecology of Mind; University of Chicago Press, Chicago.Google Scholar
  36. Moshe Bar (2009) Predictions: a universal principle in the operation of the human brain; Trans. of Royal Society B; Royal society publishing org. 30March 2009. DOI:  10.1098/rstb.2008.0321
  37. Neumann J. Von (1996); Mathematical foundation of Quantum Mechanics; Translation from German edition.Google Scholar
  38. Pellionisz, A. & Llinás, R. (1979 ; Neuroscience, 4, 323-348.Google Scholar
  39. Pellionisz, A. & Llinás,R. (1985) Neuroscience, 16: 245-273.Google Scholar
  40. Perkel D.H. (1990) in response to How brains make chaos in order to make sense of the world Neurocomputing 2 Ed by J.M Anderson et al MIT Press, Cambridge, MA, p. 406Google Scholar
  41. Prigogine, I. & Kondepudi, D. (1998): Modern Thermodynamics: From Heat Engines to Dissipative Structure; Wiley, Chichester.Google Scholar
  42. Rosenblatt, Julio, K. (2000) Autonomous Robots; 9(1), 17-25, Kluwer Academic Publishers.Google Scholar
  43. Roy, S. & Llinás, R. (2008) Dynamic Geometry, Brain function modelling and Consciousness; Eds. Banerjee, R. & Chakravorty, B.K.; Progress in Brain research; 168, 133(ISSN-0079-6123);Google Scholar
  44. Roy, S. & Llinás, R. (2012) Role of Noise in Brain function; Science; Image in action; eds. Z. Bertrand et al., World Scientific Publishers, Singapore; pp 34-44.Google Scholar
  45. Ruiz-Mirazo, K. Moreno, A. (2004) Artificial Life, 10:235–259.Google Scholar
  46. Stanek E., Cheng S. (2014); Neuroscience; 1;145-59.Google Scholar
  47. Stanek IV, E., Steven Cheng, Jun Takatoh, Bao-Xia Han, and Fan Wang, (2014) Monosynaptic Premotor Circuit Tracing Reveals Neural Substrates 4 for Oro-motor Coordination;Elife (2014).Google Scholar
  48. Tanji, J. & Shima, K. (1994) Nature; 371:413-16.Google Scholar
  49. Thompson E. (2007) Mind in life:Biology, Phenomenology, and the sciences ofMind (pp 4-47). Harvard University Press, Cambridge, MA.Google Scholar
  50. Valbo, A. B. & Wessberg, J. (1993); Journal of Physiology; 469, 673—691.Google Scholar
  51. Varela, A.B. et al (1974) Biosystems; 5(4), 187-195. (Elsevier).Google Scholar
  52. Varela, F.J. (1979) Principles of Biological Autonomy (New York: Elsevier North Holland).Google Scholar
  53. Varela, F.J. (1997) Brain Cognition, 34:72–87.Google Scholar
  54. Wessberg, J. & Valbo, A. B. (1995); Journal of Physiology; 485, 271—282;Google Scholar
  55. Wessberg, J. & Valbo, A. B. (1996); Journal of Physiology; 493, 895—908.Google Scholar
  56. Wessberg, J. & Kakuda, N. (1999); Journal of Physiology; 517, 273—285; ibid; Wessberg, J. & Kakuda, N. (2004); Journal of Physiology; 517; issue 1; published on line, 8 Sep.Google Scholar
  57. Wheeler, M. E., Paterson, S.E. (2008); Journal of Conitive Neuroscience;20(12), 2211-2225.Google Scholar
  58. Wittgenstein, L. (1913) On logic and How to do it? (original); The Cambridge review, Vol 34.Google Scholar
  59. Wittgenstein, L., Klagge, J.C. et al (1997); Cátedra;41.Google Scholar
  60. Wittgenstein L., (2001) Biography and Philosophy; Cambridge University Press.Google Scholar
  61. Yonas A. (2003) Development of space perception, in Encyclopaedia of cognitive science.:[ed. Anand R.], Macmillan; London, UK: pp. 96–100.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.National Institute of Advanced Studies, IISc CampusBengaluruIndia

Personalised recommendations