Various Approaches to Decision Making

  • Sisir RoyEmail author


In general, two paradigms deal with the categorization of decision theories: the descriptive and normative theories. Descriptive theories are based on empirical observations and on experimental studies of choice behaviors. But the normative theories specifically assume a rational decision-maker who follows well-defined preferences of behaviors as well as obeys certain axioms of rational processes. The axiomatic approach plays an important role in formulating these theories of decision making. In this process, theories of decision making are often formulated in terms of deterministic axioms. But these axioms do not necessarily account for the stochastic variation that attends empirical data. Moreover, a rigorous description of the decision process is provided only through real/time perception. Then it is possible to avail the real-time decisions by repetitive application of the fundamental cognitive process. In such a situation, the Bayesian framework provides readily applicable statistical procedures where typical inference questions are addressed. This framework offers readily applicable statistical procedures, and it is possible to address many typical inference questions. But, in many cases, the applicability of algebraic axioms comes into question concerning viability, especially, when the application connected to empirical data arises. Again, the probabilistic approach to decision making needs to be investigated properly in order to study the empirical data. In such cases, where typical inference questions are addressed, the Bayesian framework provides readily applicable statistical procedures. Attempt has been made to study the various aspects of the Bayesian approach to analyze the observational data found in the new empirical findings on decision making.


Normative model Canonical approach Axiomatic approach Bayesian approach Bayes’ rule Dempster–Shafer theory 


  1. Abdelbar, A.M. & Hedetniemi S. (1998); Artificial Intelligence; 102(1), 21-38.Google Scholar
  2. Anderson, John R. (1990); “Cognitive Psychology and its implications (3 rd edition)”: W.H. Freeman; NewYork (series of books on Psychology).Google Scholar
  3. Anderson, John (2007); “How Can the Human Mind Occur in the Physical Universe”? Oxford University Press.Google Scholar
  4. Atram, Scott (1985); American Anthropologist, New Series; 87,298-310; ibid; Atram, Scott (1990); “Cognitive Foundations of Natural History: Towards an Antropology of Science”: Cambridge University Press.Google Scholar
  5. Barlow, Jessica A. (2001); Journ. Child. Lang.; 28, 201-324.Google Scholar
  6. Barry R Cobb, Prakash P Shenoy & Rafael Rumi (2006); Statistics and Computing; 16; 293-308.Google Scholar
  7. Battaglia P.W, Jacobs R.A, et al (2003); J. Opt. Soc. Am. A., 20, 1391–1397.Google Scholar
  8. Berniker, M. & Körding, K. (2008); Nature Neuroscience, 11(12): 1454-61.Google Scholar
  9. Beck, J.M., Latham, M., Latham, P.E., & Pouget, A. (2011): J. Neurosci. 31:15310-15319 and references therein.Google Scholar
  10. Bliss T., & Lømo T. (1973) Journ. Physiol 232(2):331–56.—PMC 1350458. PMID4727084.Google Scholar
  11. Blokpoel Mark, Johan Kwisthout and Iris van Rooij (2012) Frontiers in Psychology 3, 1Google Scholar
  12. Boog, M, Höppner, P. et al (2014) Front. In Human. Neuroscience; 8, 1.Google Scholar
  13. Byrne, R. & Whiten, A. (1988) Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans: Oxford University Press.Google Scholar
  14. Carey, Susan (1985a, b);(a) Are children different kind of thinkers than adults”; In S. Chapman, J. Segal & R. Glaser (Eds); Thinking and Learning skills; 2, 485-518; Hilside, NJ, Erlbaum. (b)”Conceptual change in childhood”; Cambridge; MA, MIT pressGoogle Scholar
  15. Chatter, N, Tenenbaum, J.B. & Yuille, A. (2006); Trends in Cognitive Sciences; 10(7), 287-291.Google Scholar
  16. Clark, L. (2010); Philos. Trans. R. Soc. London, B. Biol. Sci.; 365; (1538):319-330.Google Scholar
  17. Clark, L., Studer, B. et al (2012); Frontier in Neuroscience (decision Neuroscience);6,46.Google Scholar
  18. Clutton-Brock, S.D. Albon, R.M. Gibson. (1979). Animal behavior, 27(1), 211–225.Google Scholar
  19. Courville, A.C., Daw, N.D. & Touretzky, D.S. (2006) Trends in Cognitive Sciences; 10, 294-300.Google Scholar
  20. Cosmides, L & Tooby, J. (1992); Cognitive adaptations for social exchange; In J. Barkow, L. Cosmides, & J. Tooby (Eds.); “The adapted mind”, New York: Oxford University Press.Google Scholar
  21. Dempster, A. (1967) Annals of Mathematics and Statistics; 38, 325-33.Google Scholar
  22. Deng, X, Zhang, Y. et al. (2010) Journ. Inform. & Comput. Science; 7, 2207-2215.Google Scholar
  23. Denève, S., Bayesian Spiking Neurons I: Inference, Neural Computation, 20, 91-117 (2008);ibid; Bayesian Spiking Neurons II: Learning, Neural Computation, 20, 118-145 (2008).Google Scholar
  24. Deng, Y., J., Wu, J.X., et al (2011) ICIC Express Letters, 5, 1057-1062.Google Scholar
  25. Doya, K. et al (2007) Bayesian Brain: Probabilistic approach to Neuoral Coding; The MIT Press; edition (Jan 1).Google Scholar
  26. F.B.M. de Waal (1996); Good Natured; The Origins of Right and wrong in Humans and other Animals: Harvard University press.Google Scholar
  27. Friston, K.J., Glaser, D.E. et al (2002); NeuroImage, 16:484-512.Google Scholar
  28. Fox E., Hix, D., Nowell, L.T. et al; (1993); Journal of the American Society for Information Science, 44(8): 480–491.Google Scholar
  29. Fox J. & Das S.K. (2000); Safe and Sound; Artificial intelligence in hazardous applications: American association for Artificial intelligence, The MIT press, Cambridge MA, USA.Google Scholar
  30. Fox, J., Beveridge,M., et al (2003) AI Commun. 16, 139–152.Google Scholar
  31. Fox, E., Karana, M., et al (2005); Acm Transactions On Information Systems (Tois), 23(2):147–168.Google Scholar
  32. Fox, C.W., Billington, P., Paulo, et al (2010): “Origin-Destination Analysis on the London Orbital Motorway Automated Number Plate Recognition Network”; Euro. Transport Conference.Google Scholar
  33. Franken, I H A. et al. et al (2007); Alcoholism-Clinical & Experimental Research, 31, 919-927. doi:
  34. Friston, K.J, Holmes, A.P. et al. (2003); Dynamic causal modeling; Neuroscience, 19(04,1273-302.Google Scholar
  35. Friston, K.J., (2005); Philos. Trans. R. Soc., London, B. Biol. Sci.; 360(1456),815-36.Google Scholar
  36. Gatlin Lila L. (1972); Information Theory and the Living System; Columbia University Press, NY, & London.Google Scholar
  37. Gibson, J.J. (1979); The ecological approach to visual perception (Houghton Mifflin).Google Scholar
  38. Gigerenzer, G. (2000); Adaptive thinking, Rationality in the real world: New York; Oxford University Press.Google Scholar
  39. Gold, Joshua I and Shaden N. Michael (2001) Trends in Cognitive science; 5(1); 10-16.Google Scholar
  40. Griffith, T.D., Rees, G et al (1998);; in Percept Psychology, 45, 371-327.Google Scholar
  41. Griffith Paul & Stotz K. (2000); Synthese ; (122), 29-51.Google Scholar
  42. Gunner, M.R. & Maratsos, M. (1992); in Language and Modularity and constraints cognition: The Minnesota symposium on Child Psychology; 25, Hillside, NJ, Lawrence, Erlbaum associates.Google Scholar
  43. Hoyer, P.O. & Hyvarinen, A. et al. (2003); Neuroimage; 19 (2), 253-260.Google Scholar
  44. Hubel, D. H. & Wiesel, T. N. (1974); Brain Research; Elsevier.Google Scholar
  45. Jacob, R.A. (1999); Vision. Res., 39, 3621-3629;Google Scholar
  46. Jacobs, R.A. (2002). Trends. In Cogn. Sci.; 6: 345-50.Google Scholar
  47. Kang, B., Zhang, Y.X. et al (2011) Journ. Inform. & Comp. Sci.; 8, 842-849.Google Scholar
  48. Keil, F (1979); Semantics and conceptual development; Cambridge, MA, Harvard University Press.Google Scholar
  49. Klir, G.J. & Yuan, B. (1995); Proc. Ninth ACM-SIAM Symp. on Discrete Algorithm, 668-677.Google Scholar
  50. Knill, D.C & Pouget, A. (2004) Trends in Neurosciences; 27 pp. 712-719.Google Scholar
  51. Knill, D. & Richards, W. (1996) Perception as Bayesian Inference; Cambridge University Press.Google Scholar
  52. Körding, K.P. & Wolpert, DM (2006); Probabilistic mechanisms in sensor motor control; Novartis Found Symp., 270:191-8; discussion: 198-202, 232-7.Google Scholar
  53. Körding KP, Wolpert DM (2006) Trends Cogn. Sci, 10(7):319-26.Google Scholar
  54. Kwisthout, J. (2011) Int. Journ. Approx. Reasoning, 52, 1452–1469.Google Scholar
  55. Lepora, N., Evans, M., Fox, C.W., et al (2010); Naive Bayes texture classification applied to whisker data from a moving robot: Proc. Int. Joint/Conf. Neural Networks (IJCNN).Google Scholar
  56. Libet, B. (1985a) Behavioral and Brain Sciences 8; pp. 529-66.Google Scholar
  57. Libet, B. (1985b) Journal of Theoretical Biology 114; pp. 563-70.Google Scholar
  58. Marr David, (1969) J. Physiol., 202:437–470;Google Scholar
  59. Marr David (1970 Proceedings of the Royal Society of London B”, 176:161–234;Google Scholar
  60. Marr David 1971) Phil. Trans. Royal Soc. London”, 262:23–81;Google Scholar
  61. Marr David (1982) Proceedings of the Royal Society of London B”, 214:501–524. Markov, N.T, Ercsey - Ravasz, M.M. et al (2014); Cerebral Cortex, 24:17 -36.Google Scholar
  62. Merigo, J.M. & Casanova, M. (2008); “Procd.IMPU’08”; (eds.; L. Magdalena, M. Ojedo-Aciego, J.L. Verdegay), 425-432.Google Scholar
  63. Merigo, J.M. & Gil-Lafuente, et al (2009); “Intelligence System Design & Applications”; ISDA’09.Google Scholar
  64. Merigo, J.M. & Engmann, K.J. (2010); Procd. World Congress on Engineering, 1, WCE2010, June 30-July 2, London, UK.Google Scholar
  65. Mithen Steven (1996) The Prehistory of Mind: Cognitive Origins of Arts, religion and Science; NewYork: Thomas and Hudson.Google Scholar
  66. Ming, Hsu, Bhatt, Meghana, etal (2005); Science; 310 (5754),1680-1683.Google Scholar
  67. Newell, Allan (1990) United theory of cognition; Cambridge, MA, Harvard University press.Google Scholar
  68. Ngai, E.W.T. & Wat, F.K.T. (2005); Fuzzy decision support system for risk analysis in e-commerce development, Decision Support Systems; 40; 235-255.Google Scholar
  69. Noel-Smith, P.H. (1958); Choosing, deciding and doing; Analysis; 18, 63–69.Google Scholar
  70. Pinker, S. 1994. The language instinct; NY: Morrow.Google Scholar
  71. Pouget A., Dayan, P. & Zemel, R.S. (2003); Annual Review of Neuroscience, 26; 381-410.Google Scholar
  72. Rangel, A., Camerer, C. & Montague, R. (2008); Nature Reviews Neuroscience; 9; 545-556.Google Scholar
  73. Rizzolatti G. & Laila, Craighero (2004); Ann. Rev. Neuroscience; 27; 169-172.Google Scholar
  74. Roberts, F. S. (1979); Measurement theory with applications to decision making, utility and the social sciences; London, UK: Addison-Wesley.Google Scholar
  75. Sanfey A.G. & Chang L.J. (2008) Annals of the New York Academy of Science; 1128(1); 53-62.Google Scholar
  76. Scoville, William Beecher & Milner, Brenda (1957) Journal of Neurology and Psychiatry; 20 (1):11–21.Google Scholar
  77. Shallice, Tim & Cooper, Rick (2011) The Organization of Mind: OUP, Oxford (ISBN(s); 9780199579242).Google Scholar
  78. Shafer, G. (1976) A Mathematical Theory of Evidence; Princeton University Press, Princeton.Google Scholar
  79. Shafer, G. & Srivastava, R.P. (1990) A Journal of Practice and Theory, 9 (Suppl.), 110-48.Google Scholar
  80. Shimony, S.E. (1994) Artificial Intelligence; 68; 399-410.Google Scholar
  81. Sober Elliot & Wilson David Sloan (1998); Unto Others: The Evolution and Psychology of Unselfish Behaviour; Cambridge, MA; Harvard University Press.Google Scholar
  82. Soon, C.S., Brass, M. Heinze, H.J. et al (2008); Nature Neurosccience; 11; 543-545.Google Scholar
  83. Steyvers, M., Griffiths, T.L. & Dennis, S (2006): TRENDS in Cognitive Sciences, 10(7), 327-334.Google Scholar
  84. Tversky A. & Kahneman, D. (1983) Psychological Review, 90(4); 293-315.Google Scholar
  85. Tversky A. & Kahneman, D. (1986); The journal of Business; 59(4); S251-S278Google Scholar
  86. Weiss, Y., Simoncelli, E.P. & Adelson, E.H. (2002); Motion illusions as optimal percepts; Nat. Neurosci; 5; 598–604.Google Scholar
  87. Welman, H.M. (1990); The Child’s theory of Mind; Cambridge; M A; MIT Press; A Bradford book.Google Scholar
  88. Wellman Henry, M & Gelman, Susan (1992) Annual review of Psychology, 43, 337-375.Google Scholar
  89. Willshaw DJ, Buckingham JT (August 1990); Philos. Trans. R. Soc. Lond., B, Biol. Sci. 329 (1253): 205–15.Google Scholar
  90. Zachery, W., Wherry, R. et al (1982); Decision situation, decision process and functions: Towards a theory –based framework for decision-aid design; Procd. 1882 Conf. on Human factors in Comp. System.Google Scholar
  91. Whiten, A. & Byrne, R.W. (1997); Machiavellian Intelligence II : Extensions and Evaluations(Eds.); Cambridge University Press.Google Scholar
  92. Xu, D. L. et al (2006); European Journal of Operational Research; 174; 1914- 194.Google Scholar
  93. Xu, F., & Tenenbaum, J. B. (2008); Word learning as Bayesian inference; Psychological Review; (The Cambridge Handbook of Computational Psychology, Ron Sun (ed.); Cambridge University Press.Google Scholar
  94. Yu Chen & Lind Smith (2007); Cognition; 106(3); 1558-1568.Google Scholar
  95. Yuille, A.L. & Kersten, D. (2006); Trends in Cognitive Neuroscience; 10(7); 301-308Google Scholar
  96. Zemel, R.S., Dayan, P. & Pouget, A. (1998); Neural Computation; 10; 403-430.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.National Institute of Advanced Studies, IISc CampusBengaluruIndia

Personalised recommendations