• Sisir RoyEmail author


The purpose of the decision-making process is to determine the results while committing a categorical statement or proposition. A statement or proposition is a sentence which is either true or false. A categorical proposition or statement relates two classes or categories. This process is used widely in many disciplines, for example, in complex scientific, engineering, economical, and management situations. It is necessary to consider all possible rational, heuristic, and intuitive selections so that we can summarize the results in arriving at a decision. The diversified and broad range of interests for understanding this process have induced scientific researcher also to employ a diverse and broad range of research methodologies. They began by exploring other related but independent avenues of thinking, for example, taking into account the many methods of empirical observations, together with developing essentially-related mathematical analysis, including many kinds of computational modelling. Following this mode of search, it would be possible, theoretically, to identify a method for making crucial observations. In turn, its consequences continue to enrich philosophical discourses and to further fragment decision research. Many major attempts have been made to develop independent perspectives connected to various frameworks, such as; game theory, Bayesian models, and expected utility models; models connected to behavioral decision; and approaches related to information processing for neural networks and cognitive architectures. It has already been recognized that axiomatic, as well as other kind of rigorous models of the cognitive decision making, are very much needed. The recent empirical findings in the cognitive domain clearly suggest the necessity of changing the paradigm from classical Bayesian probability theory to quantum probability to construct the model of decision making in a consistent manner. However, quantum probability is an extension of quantum logic which only incorporates the contradictions arising out of the simultaneous existence of two mutually exclusive events in a logical way rather than discarding them. It gives rise to a new possibility to model certain degrees of contradictions involved in emotions, as well as to quantify the effect of emotions on judgments and decision making.


Bayesian probability Quantum probability Empirical evidence Normative models Human cognition Axiomatic approach Fisher information Emotions Affective computation Quantum logic 


  1. Aerts, D., Broekaert, J., Gabora, L., & Sozzo, S. (2013). Behavioral and Brain Sciences, 36(03), 274-276.Google Scholar
  2. Arndt, M., Nairz, O. & Vos-Andreae et al (1999). Nature, 401,680-682.Google Scholar
  3. Bayes, T. (1763/1958). Biometrica, 45,296-315.Google Scholar
  4. Beers R.J. van, Wolpart, D.M. & Haggart, P. (2002). Current Biology;12(100; 834-837.Google Scholar
  5. Box, G.E.P. & Tiao, G.C. (1973). Bayesian Inference in Statistical analysis.Wiley; ISBN 0-471-57428-7.Google Scholar
  6. Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Journal of Mathematical Psychology, 50(3), 220-241.Google Scholar
  7. Chatter N., Tenenbaum J.B. et al. (2006). Trends in Cognitive Science, Elsevier.Google Scholar
  8. Clark, L. (2010). Philos. Trans. R. Soc. London, B. Biol. Sci.; 365;(1538):319-330.; ibid; (2013); Behavioral and Brain Sciences, p 181-204; doi  10.1017/S01405X12000477.
  9. Conte, E., Khrennikov, A. Y., Todarello, O., Federici, A., Mendolicchio, L., & Zbilut, J. P. (2009). Mental states follow quantum mechanics during perception and cognition of ambiguous figures. Open Systems & Information Dynamics, 16(01), 85-100.Google Scholar
  10. Cosmides, L. & Tooby, J. (1996). Cognition, Elsevier.; ibid; (2005); Evolutionary psychology, “Conceptual foundations, D.M. Buss (ed.); Handbook of Evolutionary Psychology”, New York, Wiley.Google Scholar
  11. Dempster, P. (1967). Annals of mathematical Statistics, 38, 325-339.Google Scholar
  12. Derksen, H.E. & Verveen, A. (1966). Science,151;1388-1389.Google Scholar
  13. Edwards Ward (1954), Psychological bulletin;41;380-417.Google Scholar
  14. Einhorn, H.J. & Hogarth, M. (1981). Ann. Rev. Psychol.,32,53-88.Google Scholar
  15. Feynman, R., Leighton, R.R. & Sands, M. (1964,1966). The Feynman Lectures on Physics, 3 volumes; ibid; Feynman, R. & Hibbs, A.R. (1965); “Quantum Mechanics & Path Integrals”;McGraw-Hill, New York.Google Scholar
  16. Frieden, B. Roy (1998, 2004). Science from Fisher information; AUnification; Cambridge University Press.Google Scholar
  17. Gershenson Carlos (1999). Modelling Emotions with Multidimensional Logic;
  18. Gibson, J.J. (1979). The ecological approach to visual perception; (Houghton Mifflin).Google Scholar
  19. Giang, P.H. & Shenoy, P.P. (2005). European Journal of Operational Research, 162,(2),450-467.Google Scholar
  20. Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Psychological review, 98(4), 506.Google Scholar
  21. Griffiths,T.L., Kemp, C. & Tenenbaum,J.B. (2008). Bayesian Models of Cognition in R.Sun(ed.), Cambridge University;Google Scholar
  22. Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Trends in cognitive sciences, 14(8), 357-364.Google Scholar
  23. Hacking Ian, M. (1975). The emergence of probability: A Philosophical Study of Early ideas about Probability, Cambridge University Press;Google Scholar
  24. Hanggi, P. (2002); A European Journal Chem Phys Chem of Chemical Physics and and Physical Chemistry “Chem.phys.Chem” 3, pp. 285-290. Google Scholar
  25. Haven E. & Khrennikov A. (2013). Quantum Social Science. Cambridge University Press, p. 128.Google Scholar
  26. Heisenberg, W. (1968). In “Quantum Theoretical Reinterpretation of Kinetic and Mechanical Reactions” Sources of quantum Mechanics(English translation); ed. B.L. Van der Waerden.Google Scholar
  27. Horvitz, E. (1999). CHI’99. Proceedings of the Sigchi conference on Human factors in Computing systems, ACM, New York, NY, USA, 159-165Google Scholar
  28. Kadane, J.R. & Larkey, P.D. (1982). Management Science, 28(2) pp. 113-120.Google Scholar
  29. Kahneman, D. (2003). American psychologist; 58(9), 697-720Google Scholar
  30. Kolmogorov, A.N (1933/1950). Foundations of theory of probability, N.Y., Chelsea Publ Co.Google Scholar
  31. Kozima, H. (2013). Japanese Psychol. Research, Special issue: Cognitive Sci. approach to Developmental disorders”; H. Murohashi(ed.) 55(2),168-174.Google Scholar
  32. Krifka, M. (1990). Papers from the 2 nd Symposium on Logic & language, Lászlo Kámán & Pólos(eds.); Budapest.Google Scholar
  33. Kwisthout John & Van Rooij (2013). Bridging the gap between theory and Practice of Approximate Baysian Inferences: Cognitive System Research 09/2013.Google Scholar
  34. Laplace: “Memoire sur les Probabilities” (1774). See discussion by E. C. Molina in “Theory of Probability, Some Comments on Laplace’s Theorie Analytique,” Bulletin of the American Mathematical Society, ¥oi. 36; (June 1930); pp. 369-392.Google Scholar
  35. Lasky, K.B. & Cohen, M.S. (1986). “WSC’86: procd. of the 18 th . Conference on Winter simulation”; pp 440-444, ACM, Newyork, NY, USA.Google Scholar
  36. Lerner S. Jennifer et al (2014). Emotion and Decision Making (16 June, 2014, Draft paper).Google Scholar
  37. Lindley, D.V. (1987). The probability approach to the treatment of uncertainty; Statistical Science, 2;(1), 3-44.Google Scholar
  38. Manski, C. F. (1977). The structure of random utility models. Theory and decision, 8(3), 229-254.Google Scholar
  39. Manski, C.F. & Lerman, S.R. (1977-1988). Econometrica: Journal of the econometric Society. Google Scholar
  40. McCollum, Gin (1999). Int.Journ.Phys., 38(12),19991201,3253-3267.Google Scholar
  41. Minsky, M.L. (1985). The society of Mind, Simon and Shuster, Old Tappan, NJ.Google Scholar
  42. Mittelstaedt P. (2011). Rational reconstruction of Modern Physics, Springer.Google Scholar
  43. Oaksford, M. & Chatter, N. (2007). The probabilistic approach to Human reasoning”; Oxford University press.Google Scholar
  44. Pearl J. (1988). Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan-Kaufmann, San Mateo.Google Scholar
  45. Pellionisz A. & Llinás R. (1982). Neuroscience; 7(12), 2949-7.Google Scholar
  46. Roy, S. & Llinás, R. (2008). Dynamic Geometry, Brain function modelling and Consciousness; Eds. R. Banerjee & B.K. Chakravorty; Progress in Brain research; 168, 133.Google Scholar
  47. Roy, S. & Llinás, R. (2012). Role of Noise in Brain function; Science; Image in action; Eds. Z. Bertrand et al., World Scientific Publishers, Singapore; pp 34-44.Google Scholar
  48. Roy,S. & Llinás, R. (2012). Metric Tensor as degree of coherence in the dynamical organization of the central nervous system(CNS), Procd. Mathematics of Distances & Applications; eds. by M.M. Deja, M. Petitzen, K. Markov) (ITHEA, Sophia), pp 169.Google Scholar
  49. Salazar R., Jara-Figueroa C., and Delgado A. (2014). Analogue of the quantum total probability rule from Paraconsistent Bayesian probability theory; arXiv:1408.5308 v 1.Google Scholar
  50. Shafer Glen A. (2008). A better interpretation of Probabilities and Dempster-Shafer degrees of Belief;
  51. Schuster, A. (1904). An Introduction to the Theory of Optics, London: Edward Arnold.Google Scholar
  52. Spanos, A. (1999). Probability Theory and Statistical Inference, Cambridge University press.Google Scholar
  53. Wang, Y. (2003): Brain and Mind:A Transdisciplinary Journal of Neuroscience and Neurophilosophy, 4(2), 151-167.Google Scholar
  54. Wang Y. (2005a) Brain and Mind: A Transdisciplinary Journal of Neuroscience & Neurophilosophy;4(2), 199-213.Google Scholar
  55. Wang Y. (2005b) In Proceedings of the 4th IEEE International Conference on Cognitive Informatics (ICCI’05) (294-300), IEEE CS Press, Irvin, California, USA, August; ibid; (2005b); A novel decision grid theory for dynamic decision-making. In Proceedings of the 4th IEEE International Conference on Cognitive Informatics (ICCI’05), (308-314), IEEE CS Press, Irvin, California,USA, August; ibid;Google Scholar
  56. Wang, Y. (2007); The Int. l Journ. of Cognitive Informatics and Natural Intelligence (IJCINI), 1(1), 1-271(1), Cognitive Informatics (ICCI’03) (pp. 93-97) London, UK.,73,33-36.Google Scholar
  57. Wang, Y., & Wang, Y. (2004); IEEE Transactions on Systems, Man, and Cybernetics (C); 36(2), 203-207.Google Scholar
  58. Wang Y. and Ruhe G. (2007). Int. Journ. of Cognitive Informatics & Natural Intelligence, 1(2), 73-85, 73.Google Scholar
  59. Weisman K. & Moss F. (1995). Nature, 373 (6509): 33–6.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.National Institute of Advanced Studies, IISc CampusBengaluruIndia

Personalised recommendations