Skip to main content

Abstract

Barley being the earliest domesticated cereal is one of the major world crops today. Wide adaptation of barley to ecogeographic conditions and higher response to low input and stressful environments make it globally cultivated. The diploid and self-pollinated nature of barley renders it as an important physiological and genetic research material. The recent yield trends in barley have shown improved productivity but the area under the crop has reduced gradually. Besides other sources of genetic variation, barley landraces continue to be an important tool of genetic diversity conserved ex situ in gene banks and need suitable phenotypic and genotypic characterisation. Gene flow involving wild progenitors and domesticated cultivars has attracted breeders’ interest in order to broaden the genetic base of barley. Biotic and abiotic factors affecting barley yield have to be determined specifically. Global warming generated issues such as tolerance to drought and disease management in barley have become increasingly important and need to be addressed in current times. Use of molecular markers and high-throughput techniques in barley has enhanced the precision for introgressing specific traits of importance. Consensus maps have allowed comparative mapping in barley to explore information available in other crops. Recent approaches like advanced backcross QTL (AB-QTL) analysis and association mapping (AM) studies have aided in understanding of the complex agronomic traits in barley. Continued improvements in transformation methods will increase transgenic efficiencies in different barley genotypes. Rapid selection for malt quality using molecular markers has to be achieved for developing high-yielding malt barley cultivars. Interspecific and intergeneric hybridization in barley can be beneficial for introgression of useful traits in the barley genetic background. Owing to health benefits of barley, industrial interest for introduction of different barley products in human diets has increased considerably. Further, consortia efforts are in progress to sequence the barley genome by the International Barley Genome Sequence Consortium. To sum up, the future barley breeding programme should combine the application of new tools and techniques with traditional and efficient plant breeding methods to achieve desired goals rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    Article  PubMed  Google Scholar 

  • Allaby RG, Brown TA (2003) AFLP data and the origins of domesticated crops. Genome 46:448–453

    Article  CAS  PubMed  Google Scholar 

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Article  Google Scholar 

  • Alvarez N, Garine E, Khasah C, Dounias E, Hossaert-McKey M, McKey D (2005) Farmers’ practices, metapopulation dynamics, and conservation of agricultural biodiversity on-farm: a case study of sorghum among the Duupa in sub-sahelian Cameroon. Biol Conserv 121:533–543

    Article  Google Scholar 

  • Ames NP, Rhymer CR (2008) Issues surrounding health claims for barley. J Nutr 138:1237–1243

    Google Scholar 

  • Andrew C (2008) The Gladiator diet, How to eat, exercise, and die a violent death. Archaeology Mag 61

    Google Scholar 

  • Ariyadasa R, Mascher M, Nussbaumer T et al (2014) A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol 164:412–423

    Article  CAS  PubMed  Google Scholar 

  • Aslop BP, Farre E, Wenzl P et al (2010) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed. doi:10.1007/s11032-010-9415-3

    Google Scholar 

  • Assefa A, Labuschagne MT (2004) Phenotypic variation in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Biodivers Conserv 13:1441–1451

    Article  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azhaguvel P, Komatsuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaeian M, Esmaeilian Y, Tavassoli A, Asgharzade A, Sadeghi M (2011) The effects of water stress, manure and chemical fertilizer on grain yield and grain nutrient content in barley. Sci Res Ess 6:3697–3701

    Article  Google Scholar 

  • Backes G, Orabi J, Wolday A, Yahyaoui A, Jahoor A (2009) High genetic diversity revealed in barley (Hordeum vulgare) collected from small-scale farmer’s fields in Eritrea. Genet Resour Crop Evol 56:85–97

    Article  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R et al (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Lagudah ES, Appels R (1992) Wide crosses in cereals. Annu Rev Plant Physiol Plant Mol Biol 43:117–143

    Article  Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    Article  CAS  PubMed  Google Scholar 

  • Behall KM, Scholfield DJ, Hallfrisch J (2006) Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutr Res 26:644–650

    Article  CAS  Google Scholar 

  • Belaid A, Morris ML (1991) Wheat and Barley production in rainfed marginal environments of west Asia and north Africa. Problems and prospects, CIMMYT economics working paper. CIMMYT, Mexico, p 91

    Google Scholar 

  • Bell GCH (1965) The comparative phylogeny of temperate cereals. In: Hutchinson J (ed) Essays on crop plant evolution. Cambridge University Press, Cambridge, pp 70–102

    Google Scholar 

  • Bellucci E, Bitocchi E, Rau D et al (2013) Population structure of barley landrace populations and gene flow with modern varieties. PLoS One 8:e83891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274

    Article  CAS  PubMed  Google Scholar 

  • Bilgic H, Steffenson BJ, Hayes MP (2005) Comprehensive genetic analyses reveal differential expression of spot blotch resistance in four populations of barley. Theor Appl Genet 111:1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Bitocchi E, Nanni L, Rossi M et al (2009) Introgression from modern hybrid varieties into landrace populations of maize (Zea mays ssp. mays L.) in central Italy. Mol Ecol 18:603–621

    Article  CAS  PubMed  Google Scholar 

  • Blake TK, Kadyrzhanova D, Shepherd KW, Islam AKMR, Langridge PL, McDonald CL, Talbert LE (1996) STS-PCR markers appropriate for wheat-barley introgression. Theor Appl Genet 93:826–832

    Article  CAS  PubMed  Google Scholar 

  • Blake T, Blake VC, Bowman JGP, Abdel-Haleem H (2010) Barley feed uses and quality improvement. In: Barley: production, improvement and uses. Wiley-Blackwell, Ames, pp 522–531

    Google Scholar 

  • Bockelman HE, Valkoun J (2010) Barley germplasm conservation and resources. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwel, Ames, pp 144–159

    Google Scholar 

  • Bowditch BM, Albright DG, Williams JGK, Braun MJ (1993) Use of randomly amplified polymorphic DNA markers in comparative genome studies. Mol Evol: Producing the Biochem Data 224:294–309

    CAS  Google Scholar 

  • Brady KC, O’ Kiely P, Forristal PD, Fuller H (2005) Schipophyluim commune on hay-bale grass silage in Ireland. Mycologist 19:30–35

    Article  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1–3) (1–4)-β-D-glucans as functional food ingredients. J Cereal Sci 42:1–13

    Article  CAS  Google Scholar 

  • Briggs DE (1978) Barley. Chapman & Hall, London, p 612

    Book  Google Scholar 

  • Brockman DA, Chen X, Gallaher DD (2013) Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur J Clin Nutr 52:1743–1753

    Article  CAS  Google Scholar 

  • Brookes AJ (1999) The essence of SNP’s. Genes Dev 234:177–186

    CAS  Google Scholar 

  • Brown AHD (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field. On farm conservation of crop diversity. IPGRI/IDRC/Lewis Publishers, Boca Raton, pp 19–48

    Google Scholar 

  • Brown AHD, Munday J (1982) Population-genetic structure and optimal sampling of landraces of barley from Iran. Genetica 58:85–96

    Article  Google Scholar 

  • Brown SE, Stephens JL, Lapitan NLV, Knudson DL (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42:274–281

    Article  CAS  PubMed  Google Scholar 

  • Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354

    Article  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) High resolution DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio Tech 9:553–557

    Article  Google Scholar 

  • Cai S, Dezhi W, Zahra J, Huang Y, Huang Y, Zhang G (2013) Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS One 8:e69776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  CAS  PubMed  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM (2010) Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2(HvFT3) under long days. J Exp Bot 62:1939–1949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caudrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSR’s) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219

    Article  CAS  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opi Plant Biol 11:215–221

    Article  CAS  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeders. Plant Growth Regul 20:149–155

    Article  CAS  Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Rao SC, Ryan J (eds) Challenges and strategies for dryland agriculture. ASA and CSSA, Madison, pp 167–190

    Google Scholar 

  • Ceccarelli S, Grando S, Capettini F, Baum M (2008) Barley Breeding for Sustainable Production. In: Breed Maj food staples. Blackwell Publishing, Iowa, pp 193–225

    Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  • Chatterjee SR, Abrol YP (1977) Protein quality evaluation of popped barley grain (Sattu). J Food Sci Tech 14:247–250

    CAS  Google Scholar 

  • Chaves MM, Oliveria MM (2004) Mechanisms underlying plant resilience to water deficits: prospects of water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chelkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.). J. Appl Genet 44:291–309

    Google Scholar 

  • Chen Z, Zhou M, Newman I, Mendham N, Zhang G, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA et al (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockram J, White J, Leigh FJ et al (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comadran J, Thomas WT, van Eeuwijk FA et al (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  CAS  PubMed  Google Scholar 

  • Comadran J, Ramsay L, MacKenzie K et al (2011a) Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet 122:523–531

    Article  PubMed  Google Scholar 

  • Comadran J, Russell JR, Booth A et al (2011b) Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet 122:1363–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JM, Corey A, Hayes PM et al (2003) Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor Appl Genet 108:95–104

    Article  CAS  Google Scholar 

  • Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M (2011) Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 54:795–804

    Article  CAS  PubMed  Google Scholar 

  • Dahleen LS, Manoharan M (2007) Recent advances in barley transformation. In Vitro Cell Dev Biol Plant 43:493–506

    Article  CAS  Google Scholar 

  • Dahleen LS, Okubara PA, Blechl AE (2001) Transgenic approaches to combat fusarium head blight in wheat and barley. Crop Sci 41:628–637

    Article  Google Scholar 

  • Dai F, Nevo E, Wu D et al (2012) Tibet is one of the centres of domestication of cultivated barley. PNAS 109:16969–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delêtre M, McKey DB, Hodkinson TR (2011) Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc Nat Acad Sci 108:18249–18254

    Article  PubMed  PubMed Central  Google Scholar 

  • Diab AA, Teulat B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C (2007) Chromosome based genomics in the cereals. Chrom Res 15:51–66

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na + discrimination locus in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Ellis R, Forester BP, Waugh R et al (1997) Mapping physiological traits in barley. New Phytol 137:149–157

    Article  CAS  Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. The John Hopkins University Press, Baltimore, pp 1–244

    Google Scholar 

  • Endris S, Mohammad MJ (2007) Nutrient acquisition and yield of barley exposed to salt stress under different levels of potassium nutrition. Int J Env Sci Tech 4:323–330

    Article  CAS  Google Scholar 

  • Faccioli P, Pecchioni N, Terzi V (1995) Thionin STS marker for barley genotype identification. Barley Genet Newsl 24:54–55

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture. FAO, Rome, pp 245–246

    Google Scholar 

  • FAOSTAT (2012) Food and Agriculture Organization (FAO) of the United Nations. FAOSTAT crop production and trade. http://faostat3.fao.org/home/index.html#VISUALIZE

  • Fedak G (1985) Wide crosses in Hordeum. In: Rasmusson DC (ed) Barley, Agronomy Monograph 26. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 155–186

    Google Scholar 

  • Fekadu W, Berhane L, Zewdie W (2014) Advance in improving morpho-agronomic and grain quality traits of barley (Hordeum vulgare L.) in central highland of Ethiopia. Adv Sci J Agric Sci 1:11–26

    Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Forester BP, Ellis RP, Thomas WTB, Bahri DMH, Ben-Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    Article  Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Friedt W, Rasmussen M (2003) Modern European barley cultivars: genetic progress in resistance, quality and yield. Paper presented at EUCARPIA cereal section meeting 2003, Italy

    Google Scholar 

  • Fu YB (2012) Genetic structure in a core subset of cultivated barley germplasm. Crop Sci 52:1195–1208

    Article  Google Scholar 

  • Gallagher LW, Soliman KM, Vivar H (1991) Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci 31:256–261

    Article  Google Scholar 

  • Gallardo F, Borie F, Alvear M, von Baer E (1999) Evaluation of aluminium tolerance of three barley cultivars by two short term screening methods and field experiments. Soil Sci Plant Nutr 45:713–719

    Article  CAS  Google Scholar 

  • Ganeshan S, Dahleen LS, Tranberg J, Lemaux PG, Chibbar RN (2008) Barley. In: Cole C, Hall TC (eds) A compendium of transgenic crop plants. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559

    Article  CAS  PubMed  Google Scholar 

  • Gatford KT, Basri Z, Edlington J et al (2006) Gene flow from transgenic wheat and barley under field conditions. Euphytica 15:383–391

    Article  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare x H. bulbosum crosses at mitotis and interphase involves micro nucleus formation and progressive heterochromatinization. Cytogenet Genom Res 114:169–174

    Article  CAS  Google Scholar 

  • Goedeke S, Hensel G, Kapusi E, Gahrtz M, Kumlehn J (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant J 1:104–117

    Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC 2:258

    Google Scholar 

  • Grando S, Macpherson H (2005) Food barley: importance, uses and local knowledge. ICARDA, Aleppo

    Google Scholar 

  • Grando S, von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In: Cooper HD, Spillane C, Hodgink T (eds) Broadening the genetic base of crop production. CABI, New York, pp 351–372

    Chapter  Google Scholar 

  • Graner A (1996) Molecular mapping of genes conferring disease resistance: the present state and future aspects. In: Scoles G, Rossnagel B (eds) Proceedings of the V international oat conference and VII international barley genetics symposium, Inv papers, Saskatoon, Canada. University Extension Press, Saskatoon, pp 157–166

    Google Scholar 

  • Graner A, Michalek W, Streng S (2000) Molecular mapping of genes conferring resistance to viral and fungal pathogens. In: Proceedings of 8th int. barley genetic symposium. University of Adelaide, Adelaide, pp 6–10

    Google Scholar 

  • Graner A, Kota R, Perovic D et al (2004) Molecular mapping: shifting from the structural to the functional level. In: Proceedings of the 9th international barley genetics symposium, 2004, Brno, Czech Republic. Agricultural Research Institute Ltd, Kromeriz, pp 49–57

    Google Scholar 

  • Gulati SC, Verma NS (1988) Genetic resources in barley, their diversity and utilization. In: Paroda RS, Arora RK, Chandel KPS (eds) Plant genetic resources-Indian perspective. NBPGR, New Delhi, pp 134–149

    Google Scholar 

  • Guo P, Li R, Salvato N, Filos M, Xia Y (2013) SNP detection by using affymetrix barley array in barley. Adv Mater Res 641–642:803–807

    Article  CAS  Google Scholar 

  • Gustafson DI, Horak MJ, Rempel CB, Metz SG, Gigax DR, Hucl P (2005) An empirical model for pollen-mediated gene flow in wheat. Crop Sci 45:1286–1294

    Article  Google Scholar 

  • Hadado TT, Rau D, Bitocchi E, Papa R (2010) Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol 10:121–141

    Article  CAS  Google Scholar 

  • Hadjichristodoulou A (1995) Evaluation of barley landraces and selections from natural outcrosses of H. vulgare ssp. spontaneum with ssp. vulgare for breeding in semi-arid areas. Genet Resour Crop Evol 42:83–89

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3:427–437

    Article  CAS  Google Scholar 

  • Han F, Ullrich SE, Clancy JA, Romagosa I (1999) Inheritance and fine mapping of major barley seed dormancy QTL. Plant Sci 143:113–118

    Article  CAS  Google Scholar 

  • Harlan JR (1968) On the origin of barley. US Department of Agriculture, Washington, DC, Agriculture handbook 338:9–31

    Google Scholar 

  • Harlan JR (1995) The living fields: our agricultural heritage. Cambridge University Press, Cambridge

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harwood WA (2014) A protocol for high-throughput Agrobacterium-mediated barley transformation. Methods Mol Biol 1099:251–260

    Article  CAS  PubMed  Google Scholar 

  • Harwood WA, Bartlett JA, Alves SA, Perry M, Smedley MA, Leyland N, Snape JW (2009) Barley transformation using Agrobacterium mediated techniques. In: Jones HD, Shewry PR (eds) Mehods in molecular biology, transgenic wheat, barley and oats. Springer, New York, pp 137–147

    Chapter  Google Scholar 

  • Haseneyer G, Stracke S, Paul C et al (2010a) Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breed 129:271–279

    Article  CAS  Google Scholar 

  • Haseneyer G, Stracke S, Piepho HP, Sauer S, Geiger HH, Graner A (2010b) DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits. BMC Plant Biol 10:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes PM, Jones BL (2000) Malting quality from a QTL perspective. In: 8th int. Barley genet. symp., Adelaide convention centre, Adelaide, south Australia. 22–27 Oct. 2000, vol 8. Glen Osmond, Waite Campus, Adelaide University, Adelaide, pp 99–105

    Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ (1993) Quantitative trait locus effects and environment interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  CAS  PubMed  Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L et al (2003) Genetic diversity for quantitative inherited agronomic and malting quality traits. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley. Elsevier Science, Amsterdam, pp 201–226

    Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    Article  CAS  PubMed  Google Scholar 

  • Hermannsson J, Kristjansdottir TA, Stefansson TS, Hallsson JH (2010) Measuring gene flow in barley fields under Icelandic sub-arctic conditions using closed-flowering varieties. Icel Agric Sci 23:51–59

    Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Article  Google Scholar 

  • Hintum van T (1992) Barley core collection. In: Munck L (ed) Barley genetics. Proc. 6th IBGS, (22–27 July 1991). Helsingborg, Sweden, 2:703–707

    Google Scholar 

  • Hinze K, Thompson RD, Ritter E, Salamini F, Schulze-Lefert P (1991) Restriction fragment length polymorphism-mediated targeting of the mlo resistance locus in barley (Hordeum vulgare). Proc Nat Acad Sci USA 88:3691–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin T, Rana R, Tuxill J et al (2007) Seed systems and crop genetic diversity in agro ecosystems. In: Jarvis DI, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Columbia University Press, New York, pp 77–116

    Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2008) Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, March J, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9:e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hori K, Kobayash T, Shimizu A, Sato K, Takeda K, Kawasaki S (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107:806–813

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Kobayashi T, Sato K, Takeda K (2005) QTL analysis of fusarium head blight resistance using a high density linkage map in barley. Theor Appl Genet 111:1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Horsley RD, Schwarz PB, Hammond JJ (1995) Genetic diversity in malt quality of north-american 6-rowed spring barley. Crop Sci 35:113–118

    Article  Google Scholar 

  • Horvath H, Huang J, Wong OT, von Westtstein D (2002) Experiences with genetic transformation of barley and characteristics of transgenic plants. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality. Haworth Press, Binghamton, pp 143–175

    Google Scholar 

  • Houston K, Druka A, Bonar N et al (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS (2006) Barley genetics and genomics: a review. Proc Pak Acad Sci 43:63–84

    CAS  Google Scholar 

  • IBGSC (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Ibl V, Kapusi E, Arcalis E, Kawagoe Y, Stoger E (2014) Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm. J Exp Bot 65:3249–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SE, Schubert A, Pillen K, Léon J (2012) Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat. Int J Agric Sci 2:216–227

    Google Scholar 

  • Islamovic E, Obert DE, Budde AD (2014) Quantitative trait loci of barley malting quality trait components in the Stellar/01Ab8219 mapping population. Mol Breed 34:59–73

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahne A, Becker D, Brettschneider R, L¨orz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundram R, Panneerselvam R (2009) Drought stress in plants: a review of morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jana S, Pietrzak LN (1988) Comparative assessment of genetic diversity in wild and primitive cultivated barley in a centre of diversity. Genetics 119:981–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen HR, Belqadi L, Santis PD, Sadiki M, Jarvis DI, Schoen DJ (2013) A case study of seed exchange networks and gene flow for barley (Hordeum vulgare subsp. vulgare) in Morocco. Genet Resour Crop Evol 60:1119–1138

    Article  Google Scholar 

  • Johansson M, Ellegren H, Adersson L (1992) Cloning and characterization of highly polymorphic porcine microsatellites. Heredity 83:196–198

    CAS  Google Scholar 

  • Johnston PA, Timmerman-Vaughan GM, Farnden KJ, Pickering R (2009) Marker development and characterization of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    Article  PubMed  Google Scholar 

  • Jones H, Leigh FJ, Mackay I et al (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Civáň P, Cockram J et al (2011) Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evol Biol 11:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Juchimiuk J, Hering B, Maluszynska J (2007) Multicolour FISH in an analysis of chromosome aberrations induced by N-nitroso-N-methylurea and maleic hydrazide in barley cells. J Appl Genet 48:99–106

    Article  PubMed  Google Scholar 

  • Kapusi E, Arcalis E, Kawagoe Y, Stoeger E (2014) Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm. J Exp Bot. doi:10.1093/jxb/eru175

    PubMed  PubMed Central  Google Scholar 

  • Karsai I, Meszaros K, Hayes PM, Bedo Z (1997) Effects of loci on chromosomes 2 (2H) and 7(5H) on developmental patterns in barley (Hordeum vulgare L.) under different photoperiod regimes. Theor Appl Genet 94:612–618

    Article  CAS  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Katerji N, Mastrorilli M, van Hoorn JV, Lahmer FZ, Hamdy A, Oweis T (2009) Durum wheat and barley productivity in saline-drought environments. Eur J Agron 31:1–9

    Article  Google Scholar 

  • Keenan JM, Goulson M, Shamliyan T, Knutson N, Kolberg L, Curry L (2007) The effects of concentrated barley β-glucan on blood lipids and other CVD risk factors in a population of hypercholesterolemic men and women. Br J Nutr 97:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Taketa S, Ichii M, Kawasaki S (2003) Efficient fine mapping of the naked caryopsis gene (nud) by HEGS (High Efficiency Genome Scanning)/AFLP in barley. Theor Appl Genet 108:73–78

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Ozkan H, Kohl J et al (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genom 276:230–241

    Article  CAS  Google Scholar 

  • Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the triticeae in the fertile crescent. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the triticeae. Springer, New York, pp 81–119

    Chapter  Google Scholar 

  • Kilik H, Akar T, Kendal E, Saim I (2010) Evaluation of grain yield and quality of barley varieties under rainfed conditions. Afr J Biotechnol 9:7825–7830

    Google Scholar 

  • Kleinhofs A, Han F (2002) Molecular mapping of the barley genome. In: Barley science: recent advances from molecular biology to agronomy of yield and quality. Theor Appl Genet 76:815–829

    Google Scholar 

  • Kleinhofs A, Chao S, Sharp P (1988) Mapping of nitrate reductase genes in barley and wheat. In: Miller TE, Koebner RMD (eds) Proceeding of the seventh international wheat genetics symposium. Institute of Plant Science Research, Cambridge, pp 541–546

    Google Scholar 

  • Kleinhofs A, Kilian A, Maroof MAS et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  PubMed  Google Scholar 

  • Knežević D, Paunović A, Madić M et al (2007) Koncept oplemenjivanja strnih žitadostignuća i perspektive. XII Savetovanje o biotehnologiji, Agronomski fakultet, Zbornik radova, Čačak, 2–3:271–283

    Google Scholar 

  • Knupffer H, Terentyeva I, Hammer K, Sato K (2003) Ecogeographical diversity- a Vavilovian approach. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science BV, Amsterdam, pp 53–76

    Chapter  Google Scholar 

  • Komatsuda T, Tanno K, Salomon B, Bryngelsson T, von Bothmer R (1999) Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome 42:973–981

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phytol 137:1–8

    Article  Google Scholar 

  • Korzun L, Künzel G (1997) Integration of 31 translocation breakpoints of chromosome 4H into the corresponding Igri/Franka-derived RFLP map. Barley Genet Newsl 28:23–25

    Google Scholar 

  • Kota R, Rudd S, Facius A et al (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33

    Article  CAS  PubMed  Google Scholar 

  • Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronbak R, Ingvardsen CR, Madsen CK, Gregersen PL (2014) A novel approach to the generation of seamless constructs for plant transformation. Plant Methods 10:10. doi:10.1186/1746-4811-10-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161

    Article  Google Scholar 

  • Kutcher HR, Bailey KL, Rossnagel BG, Legge WG (1996) Identification of RAPD markers for common root rot and spot blotch (Cochliobolus sativus) resistance in barley. Genome 39:206–215

    Article  CAS  PubMed  Google Scholar 

  • Kutlu I, Kinaci G (2010) Evaluation of drought resistance indicators for yield and its components in three triticale cultivars. J Tekirdag Agric Faculty 7:95–103

    Google Scholar 

  • Lamara M, Zhang LY, Marchand S, Nicholas AT, Belzile F (2013) Comparative analysis of genetic diversity in Canadian barley assessed by SSR, DarT and pedigree data. Genome 56:351–358

    Article  CAS  PubMed  Google Scholar 

  • Lang MM, Linc G, Szakacs E (2013) Wheat barley hybridization: the last 40 years. Euphytica. doi:10.1007/s10681-013-1009-9

    Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395

    Article  CAS  Google Scholar 

  • Larson SR, Kadyrzhanova D, McDonald C, Sorrells M, Blake TK (1996) Evaluation of barley chromosome-3 yield QTLs in a backcross F2 population using STS-PCR. Theor Appl Genet 93:618–625

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  CAS  PubMed  Google Scholar 

  • Lemaux PG, Cho MJ, Louwerse J, Williams R, Wan Y (1996) Bombardment mediated transformation methods of barley. Bio-Rad US/EG Bull 2007:1–6

    Google Scholar 

  • Lemaux PG, Cho MJ, Zhang S, Bregitzer P (2008) Transgenic cereals: Hordeum vulgare L. (barley). In: Vasil IK (ed) Molecular improvement of cereal crops. Kluwer Academic Publishers, Dordrecht, pp 215–316

    Google Scholar 

  • Li J, Kaneko T, Qin LQ, Wang J, Wang Y (2003) Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition 19:926–929

    Article  CAS  PubMed  Google Scholar 

  • Linde-Laursen I (1997) Recommendations for the designation of the barley chromosomes and their arms. Barley Genet Newsl 26:1–3

    Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1–16

    Article  CAS  Google Scholar 

  • Linnaeus C (1753) Species Plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae, Impensis Laurentii Salvii. [L. Salvius, Stockholm.] 1st ed. Vol. I

    Google Scholar 

  • Lundqvist A (1962) Self incompatibility in diploid Hordeum bulbosum L. Heridatas 48:138–152

    Article  Google Scholar 

  • Lundqvist U, Franckowiak J, Konishi T (1996) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–43

    Google Scholar 

  • Macleod LC (2000) Breeding Barley for malt and beer. In: Proceedings of 8th barley genetic symposium, pp 81–86

    Google Scholar 

  • Madic M, Paunovic A, Djurovic D, Knezevic D, Tanaskovic S (2012) Breeding barley (Hordeum vulgare L.) for abiotic and biotic limiting factors. Third International Scientific Symposium “Agrosym Jahorina 2012”, pp 257–262

    Google Scholar 

  • Mano Y, Sayed-Tabatabaei BE, Graner A, Blake T, Takaiwa F, Oka S, Komatsuda T (1999) Map construction of sequence-tagged sites (STSs) in barley (Hordeum vulgare L.). Theor Appl Genet 98:937–946

    Article  CAS  Google Scholar 

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    Article  CAS  PubMed  Google Scholar 

  • Marconi E, Graziano M, Cubadda R (2000) Composition and utilization of barley pearling by-products for making functional pastas rich in dietary fibre and β-glucans. Cereal Chem 77:133–139

    Article  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent “twin T-DNAs” on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • Matus-Cádiz MA, Hucl P, Horak MJ, Blomquist LK (2004) Gene flow in wheat at the field scale. Crop Sci 44:718–727

    Article  Google Scholar 

  • Mayer KF, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCauley DE (1997) The relative contribution of seed and pollen movement to the local genetic structure of Silene alba. J Hered 88:257–263

    Article  Google Scholar 

  • McGuire SJ (2008) Securing access to seed: Sicial relations and sorghum seed exchange in eastern Ethiopia. Hum Ecol 36:217–229

    Article  Google Scholar 

  • Michalek W, Kunzel G, Graner A (1999) Sequence analysis and gene identification in a set of mapped RFLP markers in barley (Hordeum vulgare). Genome 42:849–853

    Article  CAS  PubMed  Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminium tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598

    Article  CAS  Google Scholar 

  • Mirzaei M, Kahrizi D, Rezaeizad A (2011) Androgenesis and spontaneous chromosome doubling in Hordeum vulgare L. Researches of the 1st International Conference (Babylon and Razi universities), pp 248–252

    Google Scholar 

  • Mohammad AJ, Ali A, Russel HB, Mona A, Haider KZ, Mohammed AK (2013) Characterization and antimicrobial activity of barley grain extract. Int J Curr Microbiol App Sci 2:41–48

    Google Scholar 

  • Molina-Cano JL, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor Appl Genet 110:613–619

    Article  CAS  PubMed  Google Scholar 

  • Molnar SJ, James LE, Kasha KJ (2000) Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43:224–231

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) East of the Fertile Crescent. Proc Natl Acad Sci U S A 104:3289–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci U S A 102:2442–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai Y, Gill BS (1991) Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome 34:448–452

    Article  Google Scholar 

  • Munoz AM, Xiong Y, Schmitt MR et al (2010) Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genom 11:653. doi:10.1186/1471-2164-11-653

    Article  CAS  Google Scholar 

  • Munoz AM, Matthew JM, Prasanna RB et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. The Plant Genome 4:238–249

    Article  CAS  Google Scholar 

  • Munoz AM, Marcos AC, Endelman JB et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS One 9:e94688

    Article  CAS  Google Scholar 

  • Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivarsusing the GFP and GUS reporter genes. Plant Cell Rep 22:397–402

    Article  CAS  PubMed  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naghaii V, Asgharipour MR (2011) Difference in drought stress responses of 20 barley genotypes with contrasting drought tolerance during grain filling. Adv Env Biol 5:3042–3049

    Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources of wild barley, Hordeum spontaneum in the fertile crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 19–43

    Google Scholar 

  • Nevski SA (1941) Beitrage zur Kenntnis der wildwachsenden Gersten in Zusammenhang mit der Frage uber der Ursprung von Hordeum vulgare L. und Hordeum distichon L. (Versuch einer Monographic der Gattung Hordeum) Trudu Bot Inst Akad Nauk SSSR, Ser 1,5:64–255

    Google Scholar 

  • Newman CW, Newman RK (1992) Nutritional aspects of barley seed structure and composition. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. C.A.B International, Wallingford, pp 351–368

    Google Scholar 

  • Newman CW, Newman RK (2006) A brief history of barley foods. Cereal Foods World 51:4–7

    Google Scholar 

  • Newman CW, Newman RK (2008) Barley for food and health: science, technology and products. Wiley Publishers, New York

    Book  Google Scholar 

  • Newton AC, Flavell AJ, George TS et al (2011) Crops that feed the world. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178

    Article  Google Scholar 

  • Nielsen G, Johansen HB (1986) Proposal for the identification of barley varieties based on the genotypes for 2 hordein and 39 isoenzyme loci of 47 reference varieties. Euphytica 35:815–833

    Article  Google Scholar 

  • Oerke EC, Dehne HW (1997) Global crop production and the efficacy of crop protection current situation and future trends. Europ J Plant Pathol 103:203–215

    Article  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    Article  CAS  PubMed  Google Scholar 

  • Orabi J, Backes G, Wolday A, Yahyaoui A, Jahoor A (2007) The Horn of Africa as a centre of barley diversification and a potential domestication site. Theor Appl Genet 114:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Kafkas S, Sertac Ozer M, Brandolini A (2005) Genetic relationships among South-East turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theor Appl Genet 112:12–20

    Article  PubMed  Google Scholar 

  • Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108

    Article  CAS  Google Scholar 

  • Papa R, Gepts P (2004) Asymmetric gene flow and introgression between domesticated and wild populations. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI, Wallingford

    Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2004) Inferring seed exchange between farmers from population genetic structure of barely landrace Arabi Aswad from Northern Syria. Genet Resour Crop Evol 51:471–478

    Article  CAS  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen G, Zimny J, Becker D, Jahne-Gartner A, Lorz H (1997) Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor Appl Genet 94:749–757

    Article  CAS  Google Scholar 

  • Pickering RA, Devaux P (1992) Haploid production: approaches and use in plant breeding. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Oxford, pp 519–547

    Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genom Res 109:344–349

    Article  CAS  Google Scholar 

  • Pickering R, Hill AM, Michel M, Timmerman-Vaughan CM (1995) The transfer of a powdery mildew-resistant gene from Hordeum bulbosum to barley (H. vulgare L.) chromosome 2(2I). Theor Appl Genet 91:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Pickering RA, Hudakova S, Houben A, Johnston PA, Butler RC (2004) Reduced metaphase1 associations between the short arms of homoeologous chromosomes in a Hordeum vulgare L. x Hordeum bulbosum L. diploid hybrid influences the frequency of recombinant progeny. Theor Appl Genet 109:911–916

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell W, Thomas WTB, Baird E et al (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:48–59

    Article  CAS  Google Scholar 

  • Pržulj N, Momčilović V (1995) Oplemenjivanje pivarskog ječma. Pivarstvo 28:161–163

    Google Scholar 

  • Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci 106:13880–13885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Lindhout P (1997) Development of AFLP markers in barley. Mol Gen Genet 254:330–336

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high density molecular map in barley. Theor Appl Genet 96:376–384

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Karakousis A, Moroni JS et al (2003) Development and allelic diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust J Agric Res 54:1315–1321

    Article  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    Article  CAS  PubMed  Google Scholar 

  • Rao HS, Basha OP, Singh NK, Sato K, Dhaliwal HS (2007) Frequency distributions and composite interval mapping for QTL analysis in ‘Steptoe’ × ‘Morex’ barley mapping population. Barley Genet Newsl 37:520, http://www.wheat.pw.usda.gov/ggpages/bgn

    Google Scholar 

  • Rasmussion DC (1985) Barley. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America Publishers, Madison

    Google Scholar 

  • Reid DA, Wiebe GA (1978) Taxonomy, botany, classification, and world collection. In: Barley: origin, botany, culture, winter hardiness, genetics, utilization, pests, vol 338, Agriculture handbook. US Department of Agriculture, Washington, pp 78–104

    Google Scholar 

  • Ren X, Sun D, Sun G, Li C, Dong W (2013) Molecular detection of QTL for agronomic and quality traits in a doubled haploid barley population. Aust J Crop Sci 7:878–886

    Google Scholar 

  • Ritala A, Apegren K, Kurt’en U et al (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol 24:317–325

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278–285

    Article  CAS  PubMed  Google Scholar 

  • Roberts EH, Summerfield RJ, Cooper JP, Ellis RH (1988) Environmental control of flowering in barley (Hordeum vulgare L.). I. Photoperiod limits to long-day responses, photoperiod-insensitive phases and effects of low-temperature and short-day vernalization. Ann Bot 62:127–144

    Google Scholar 

  • Rostoks N, Mudie S, Cardle L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genom 274:515–527

    Article  CAS  Google Scholar 

  • Roy J, Smith K, Muehlbauer G, Chao S, Close T, Steffenson B (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu S (1979) Grain quality of barley for human diet. In: Proceedings of joint barley utilization seminar. Korean Science and Engineering Foundation, Suweon, pp 94–108

    Google Scholar 

  • Saal B, von Korff M, Leon J, Pillen K (2011) Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL x nitrogen interaction effects for yield related traits. Euphytica 177:223–239

    Article  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Samberg LH, Fishman L, Allendorf FW (2013) Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system. Evol Appl 6:1133–1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Sameri M, Komatsuda K (2004) Identification of quantitative trait loci (QTLs) controlling heading time in the population generated from a cross oriental and occidental barley cultivars (Hordeum vulgare L). Breed Sci 54:327–334

    Article  CAS  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108:E498–E505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  CAS  PubMed  Google Scholar 

  • Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate Assay. G3 (Bethesda) 1:187–196

    Article  CAS  Google Scholar 

  • Schulze ED (1988) Adaptation mechanisms of non cultivated arid-zone plants: useful lesson for agriculture? In: Bidinger ER, Johansen C (eds) Drought research priorities for the dryland tropics. ICRISAT, Patancheru

    Google Scholar 

  • Schwarz G, Michalek W, Mohler V, Wenzel G, Jahoor A (1999) Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor Appl Genet 98:521–530

    Article  CAS  Google Scholar 

  • Shepherd KW, Islam AKMR (1992) Progress in the production of wheat–barley addition and recombination lines and their use in mapping the barley genome. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 99–114

    Google Scholar 

  • Sherman JD, Fenwick AL, Namuth DM, Lapitan NLV (1995) A barley RFLP map: alignment of three barley maps and comparisons to gramineae species. Theor Appl Genet 91:681–690

    Article  CAS  PubMed  Google Scholar 

  • Shin JS, Chao S, Corpuz L, Blake T (1990) A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. Genome 33:803–810

    Article  CAS  PubMed  Google Scholar 

  • Simons G, van der Lee T, Diergaarde P et al (1997) AFLP-based fine mapping of the mlo gene to a 30-kb DNA segment of the barley genome. Genomics 44:61–70

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Graner A, Ulrich W (2008) Barley genomics: an overview. Int J Plant Genom. doi:10.1155/2008/486258

    Google Scholar 

  • Stanca AM, Romagosa I, Takeda K et al (2003) Diversity in abiotic stresses. In: Bothmer von R, Knupffer H, Hintum van T, Sato K (eds) Diversity in barley (Hordeum vulgare L.). Elsevier Science B.V, Amsterdam, pp 179–199

    Google Scholar 

  • Steffenson BJ, Olivera P, Roy JA et al (2007) A walk on the wide side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532–544

    Article  Google Scholar 

  • Stein N, Prasad M, Scholz U et al (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  CAS  PubMed  Google Scholar 

  • Stephens JL, Brown SE, Lapitan NLV, Knudson DL (2004) Physical mapping of barley genes using an ultra sensitive fluorescence in situ hybridization technique. Genome 47:179–189

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras J-B et al (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  CAS  PubMed  Google Scholar 

  • Sullivan P, Arendt E, Gallagher E (2013) The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci Technol 29:124–134

    Article  CAS  Google Scholar 

  • Sun L, Wang X (1999) Genetic diversity of Chinese hull-less barley germplasm and its utilization. Plant Genet Resour Newsletter 120:55–57

    Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Syvanen AC (2005) Toward genome-wide SNP genotyping. Natl Genet 37:5–10

    Article  CAS  Google Scholar 

  • Takahashi R (1955) The origin and evolution of cultivated barley. Adv Genet 7:227–266

    Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Barley genetics. Washington State University Press, Washington

    Google Scholar 

  • Taketa S, Kikuchi S, Awayama T et al (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor Appl Genet 108:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Talame V, Bovina R, Sanguineti MC et al (2008) TILLMore, a resource for the discoversy of chemically induced mutants in barley. Plant Biotechnol J 6:477–485

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens – mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tondelli E, Francia E, Barabaschi D et al (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Tong YP, Rengel Z, Graham RD (1997) Interactions between nitrogen and manganese nutrition of barley genotypes differening in manganese efficiency. Ann Bot 79:53–58

    Article  CAS  Google Scholar 

  • Toojinda T, Baird E, Booth A (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Tragoonrung S, Kanizin V, Hayes PM, Blake TK (1992) Sequence tagged-site-facilitated PCR for barley genome mapping. Theor Appl Genet 84:1002–1008

    CAS  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J et al (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880

    Article  CAS  Google Scholar 

  • Tsuchiya T (1986) Chromosome mapping in barley by means of trisomic analysis. In: Sddiqui KA, Faruqui AM (eds) New approaches to crop improvement. PIDC Press, Karachi

    Google Scholar 

  • Ullrich SE (2010) Significance, adaptation, production, and trade of barley. In: Ullrich SE (ed) Barley: production, improvement and uses. Wiley-Blackwell, Ames, pp 3–13

    Chapter  Google Scholar 

  • Ullrich S, Nair S, Blake T et al (2010) Variation in kernel hardness and associated traits in US barley breeding lines. Cereal Chem 87:461–466

    Article  CAS  Google Scholar 

  • Um MO, Park T, Kim YJ et al (2007) Particle bombardment-mediated transformation of barley with an Arabidopsis NDPK2 cDNA. Plant Biotechnol Rep 1:71–77

    Article  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L et al (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Paulo MJ, Grando S et al (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crop Res 126:171–180

    Article  Google Scholar 

  • Verma RPS, Sharma RK, Nagarajan S (2003) Influence of nitrogen and irrigation on malt and wort quality in barley. Cer Res Comm 31:437–444

    Google Scholar 

  • Verma RPS, Sarkar B, Gupta R, Varma A (2008) Breeding barley for malting quality improvement in India. Cer Res Comm 36:135–145

    Article  Google Scholar 

  • Veteläinen M (1994) Exotic barley germplasm: variation and effects on agronomic traits in complex crosses. Euphytica 79:127–136

    Article  Google Scholar 

  • Visioni A, Tondelli A, Francia E et al (2013) Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genom 14:424

    Article  CAS  Google Scholar 

  • von Bothmer R (1992) The wild species of Hordeum: relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 3–18

    Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn, Systematic and ecogeographical studies on crop genepools. IBPGR, Rome

    Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003a) The domestication of cultivated barley. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in Barley (Hordeum vulgare). Elsevier BV, Amsterdam, pp 9–27

    Google Scholar 

  • von Bothmer R, Sato K, Knüpffer H, van Hintum T (2003b) Barley diversity-an introduction. Dev Plant Genet Breed 7:3–8

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93

    Article  CAS  Google Scholar 

  • von Korff M, Leon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464

    Article  Google Scholar 

  • Wagner DB, Allard RW (1991) Pollen migration in predominantly self-fertilizing plants-barley. J Heredity 82:302–304

    CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RR, Zhang XY (1996) Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. Chrom Res 4:583–587

    Article  CAS  PubMed  Google Scholar 

  • Wang YR, Kang SZ, Li FS, Zhang L, Zhanf JH (2007) Saline water irrigation through a crop-water-salinity production function and a soilwater-salinity dynamic model. Pedosphere 17:303–317

    Article  Google Scholar 

  • Wang JM, Yang JM, McNeil DL, Zhou MX (2010) Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica 175:331–342

    Article  Google Scholar 

  • Wang J, Yang J, Jia Q et al (2014) A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS ONE 9:e90144. doi:10.1371/journal.pone.0090144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waugh R, Bonar N, Baird E et al (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  • Weerasena JS, Steffenson BJ, Falk AB (2004) Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712–719

    Article  CAS  PubMed  Google Scholar 

  • Weibull J, Walther U, Sato K, Habekus A, Kopahnke D, Proeseler G (2003) Diversity in resistance to biotic stresses. In: von Bothmer R, van Hintum T, Knupffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science BV, Amsterdam, pp 143–178

    Chapter  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206

    Article  CAS  Google Scholar 

  • Wiebe GA (1978) Introduction of barley into the new world. In: Barley: origin, botany, culture, winter hardness, genetics, utilization, pests, vol 338, Agriculture handbook . U.S. Department of Agriculture, Washington, pp 1–9

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic-analysis using Random Amplified Polymorphic DNA markers. Methods Enzymol 218:704–740

    Article  CAS  PubMed  Google Scholar 

  • Witcobe JR (1978) Two row and six row wild barley from western Himalaya. Euphytica 27:601–604

    Article  Google Scholar 

  • Wood PJ, Beer MU (1998) Functional oat products. In: Mazza G (ed) Functional foods-biochemical and processing aspects. Technomic Publishing Co., Inc, Lancaster, pp 1–37

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genet 38:114–138

    Google Scholar 

  • Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    Article  CAS  Google Scholar 

  • Yan L, Fu D, Li C et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalewski W, Orczyk W, Gasparis S, Orczyk AN (2012) HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol 12:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare M (2012) Evaluation of drought tolerance indices for the selection of Iranian barley (Hordeum vulgare) cultivars. Afr J Biotech 11:15975–15981

    Article  Google Scholar 

  • Zeng F, Shabala L, Zhou M, Zhang G, Shabala S (2013) Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Front Plant Sci 4:313. doi:10.3389/fpls.2013.00313

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Xin ZY, Larkin PJ (2001) Molecular characterization of a Thinopyrum intermedium Group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome 44:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Zhou MX, Johnson P, Zhou GF, Li CD, Lance R (2012) Quantitative trait loci for water logging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. Crop Sci 52:2082–2088

    Article  Google Scholar 

  • Zhou F, Gonzales AM, Clegg MT et al (2014) Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3: Genes|Genomes|Genetics. doi:10.1534/g3.114.010561

    Google Scholar 

  • Zhu JK (2001) Over expression of delta-pyrroline-5- caboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. J Plant Sci 6:66–72

    CAS  Google Scholar 

  • Zoghlami N, Bouagila A, Lamine M, Hajri H, Ghorbel A (2011) Population genetic structure analysis in endangered Hordeum vulgare landraces from Tunisia: conservation strategies. Afr J Biotech 10:10344–10351

    Article  Google Scholar 

  • Zohary D (1999) Monophyletic vs polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naval Kishore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kishore, N., Kumar, V., Verma, R.P.S. (2016). Barley. In: Singh, M., Kumar, S. (eds) Broadening the Genetic Base of Grain Cereals. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9_5

Download citation

Publish with us

Policies and ethics