Retinal Photoreceptor Ellipsoid Zone Integrity in Diabetic Macular Edema

  • Sandeep Saxena
  • Khushboo Srivastav
  • Surabhi Ruia
  • Prateep Phadikar
  • Levent Akduman


Spectral domain optical coherence tomography (SD-OCT) and further advances in OCT technology have enabled higher resolution retinal imaging. With the delineation of the four hyperreflective bands in the outer retina, retinal microstructural changes have been documented in diabetic retinopathy. The integrity of photoreceptor external limiting membrane and inner segment ellipsoid zone, in particular, has been correlated with disease severity and visual acuity. Various OCT-based grading systems with regard to disruption of photoreceptor external limiting membrane and inner segment ellipsoid zone have been proposed. The pretreatment status of photoreceptor layer is also useful in predicting the post-treatment recovery of inner segment ellipsoid zone and visual acuity.


Visual Acuity Diabetic Retinopathy Retinal Pigment Epithelium Diabetic Macular Edema Spectral Domain Optical Coherence Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashakiran S, Krishnamurthy N, Navin S et al (2010) Behaviour of serum uric acid and lipid profile in relation to glycemic status in proliferative and non-proliferative diabetic retinopathy. Curr Neurobiol 2:57–61Google Scholar
  2. Bjork S, Kapur A, King H et al (2003) Global policy: aspects of diabetes in India. Health Policy 66:61–72CrossRefPubMedGoogle Scholar
  3. Bloomgarden ZT (2007) Screening for and managing diabetic retinopathy: current approaches. Am J Health Syst Pharm 64:S8–S14CrossRefPubMedGoogle Scholar
  4. Bolz M, Schmidt-Erfurth U, Deak G et al (2009) Optical coherence tomographic hyper-reflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920CrossRefPubMedGoogle Scholar
  5. Chhablani JK, Kim JS, Cheng L et al (2012) External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 250:1415–1420CrossRefPubMedGoogle Scholar
  6. Chung H, Park B, Shin HJ (2012) Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema. Ophthalmology 119:1056–1065CrossRefPubMedGoogle Scholar
  7. Fernandez EJ, Hermann B, Povazay B et al (2008) Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094CrossRefPubMedGoogle Scholar
  8. Helmy YM, Atta Allah HRA (2013) Optical coherence tomography classification of diabetic cystoid macular edema. Clin Ophthalmol 7:1731–1737PubMedPubMedCentralGoogle Scholar
  9. Ito S, Miyamoto N, Ishida K et al (2013) Association between external limiting membrane status and visual acuity in diabetic macular edema. Br J Ophthalmol 97:228–232CrossRefPubMedGoogle Scholar
  10. Jain A, Saxena S, Khanna VK et al (2013) Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis 19:1760–1768PubMedPubMedCentralGoogle Scholar
  11. Jain A, Saxena S, Ruia S et al (2015) Altered lipid profile is associated with external limiting membrane and inner segment ellipsoid band disruption in type 2 diabetes mellitus: a preliminary study. Open Sci J Clin Med 3:37–41Google Scholar
  12. Kim BY, Smith SD, Kaiser PK (2006) Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol 142:405–412CrossRefPubMedGoogle Scholar
  13. Ko TH, Fujimoto JG, Duker JS et al (2004) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111:2033–2043CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lu M, Perez VL, Ma N et al (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci 40:1808–1812PubMedGoogle Scholar
  15. Lu RW, Curcio CA, Zhang Y et al (2012) Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina. J Biomed Opt 17:060504CrossRefPubMedPubMedCentralGoogle Scholar
  16. Maheshwary AS, Oster SF, Yuson RM et al (2010) The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol 150:63–67CrossRefPubMedPubMedCentralGoogle Scholar
  17. Man RE, Sasongko MB, Sanmugasundram S et al (2012) Longer axial length is protective of diabetic retinopathy and macular edema. Ophthalmology 119:1754–1759CrossRefPubMedGoogle Scholar
  18. Martidis A, Duker JS, Greenberg PB et al (2002) Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109:920–927CrossRefPubMedGoogle Scholar
  19. Mehalow AK, Kameya S, Smith RS et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12:2179–2189CrossRefPubMedGoogle Scholar
  20. Moore TC, Moore JE, Kaji Y et al (2003) The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci 44:4457–4464CrossRefPubMedGoogle Scholar
  21. Murakami T, Nishijima K, Akagi T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53:1506–1511CrossRefPubMedGoogle Scholar
  22. Murata T, Ishibashi T, Khalil A et al (1995) Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res 27:48–52CrossRefPubMedGoogle Scholar
  23. Nunes S, Pereira I, Santos A et al (2010) Central retinal thickness measured with HD-OCT shows a weak correlation with visual acuity in eyes with CSME. Br J Ophthalmol 94:1201–1204CrossRefPubMedGoogle Scholar
  24. Omri S, Omri B, Savoldelli M et al (2010) The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 4:183–195PubMedPubMedCentralGoogle Scholar
  25. Otani T, Yamaguchi Y, Kishi S (2010) Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina 30:774–780CrossRefPubMedGoogle Scholar
  26. Quigely M, Cohen S (1999) A new pressure attenuation index to evaluate retinal circulation. A link to protective factors in diabetic retinopathy. Arch Ophthalmol 117:84–89CrossRefGoogle Scholar
  27. Saxena S, Mishra N, Khanna V et al (2014) Increased serum N-CML, VEGF and ICAM-1 is associated with photoreceptor inner segment ellipsoid disruption in diabetic retinopathy. JSM Biotechnol Bioeng 2:1039Google Scholar
  28. Saxena S, Srivastav K, Akduman L (2015) Spectral domain optical coherence tomography based alterations in macular thickness and inner segment ellipsoid are associated with severity of diabetic retinopathy. Int J Ophthalmol Clin Res 2:007Google Scholar
  29. Sebekova K, Kupcova V, Schinzel R et al (2002) Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis – amelioration by liver transplantation. J Hepatol 36:66–71CrossRefPubMedGoogle Scholar
  30. Sharma S, Oliver-Fernandez A, Liu W et al (2005) The impact of diabetic retinopathy on health-related quality of life. Curr Opin Ophthalmol 16:155–159CrossRefPubMedGoogle Scholar
  31. Sharma S, Saxena S et al (2015) Nitric oxide levels in diabetic retinopathy and its association with disruption of photoreceptor IS-OS junction and topographic alterations in retinal pigment epithelium. Clin Exp Ophthalmol. doi: 10.1111/ceo.12506
  32. Sharma SR, Saxena S, Mishra N et al (2014) The association of grades of photoreceptor inner segment-ellipsoid band disruption with severity of retinopathy in type 2 diabetes mellitus. J Case Rep Stud 2:205Google Scholar
  33. Shin HJ, Lee SH, Chung H et al (2012) Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 250:61–70CrossRefPubMedGoogle Scholar
  34. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619CrossRefPubMedPubMedCentralGoogle Scholar
  35. Srinivasan VJ, Ko TH, Wojtkowski M et al (2006) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47:5522–5528CrossRefPubMedPubMedCentralGoogle Scholar
  36. Staurenghi G, Sadda S, Chakravarthy U et al (2014) for the International Nomenclature for Optical Coherence Tomography (IN_OCT) Panel. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. Ophthalmology 21:1572–1578Google Scholar
  37. Strom C, Sander B, Larsen N et al (2002) Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 43:241–245PubMedGoogle Scholar
  38. Wakabayashi Y, Kimura K, Muramatsu D et al (2013) Axial length as a factor associated with visual outcome after vitrectomy for diabetic macular edema. Invest Ophthalmol Vis Sci 54:6834–6840CrossRefPubMedGoogle Scholar
  39. Yamamoto S, Yamamoto T, Hayashi M et al (2001) Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms. Graefes Arch Clin Exp Ophthalmol 239:96–101CrossRefPubMedGoogle Scholar
  40. Yamauchi Y, Yagi H, Usui Y et al (2011) Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography. Clin Ophthalmol 5:1649–1653CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yanyali A, Bozkurt KT, Macin A et al (2011) Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema. Ophthalmologica 226:57–63CrossRefPubMedGoogle Scholar
  42. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 11:244–252CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Sandeep Saxena
    • 1
  • Khushboo Srivastav
    • 1
  • Surabhi Ruia
    • 1
  • Prateep Phadikar
    • 1
  • Levent Akduman
    • 2
  1. 1.Department of OphthalmologyKing George’s Medical UniversityLucknowIndia
  2. 2.Department of OphthalmologySaint Louis UniversitySaint LouisUSA

Personalised recommendations