Advertisement

Swept-Source Optical Coherence Tomography

  • Colin S. Tan
  • SriniVas R. Sadda
Chapter

Abstract

In the two decades since optical coherence tomography (OCT) was first described (Huang et al. 1991), this technology has played essential roles in ophthalmology as well as other branches of medicine. The technology has been adapted to produce noninvasive, high-resolution images of both the anterior segment (cornea and structures at the angles) and posterior pole (retina, choroid, sclera, and optic disc).

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Retinal Nerve Fiber Layer Thickness Choroidal Thickness Polypoidal Choroidal Vasculopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AMD

Age-related macular degeneration

CNV

Choroidal neovascularization

FA

Fluorescein angiogram

ICGA

Indocyanine green angiogram

PED

Pigment epithelium detachment

SD-OCT

Spectral domain optical coherence tomography

SS-OCT

Swept-source optical coherence tomography

References

  1. Adhi M, Duker JS (2013) Optical coherence tomography-current and future applications. Curr Opin Ophthalmol 24:213–221CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adhi M, Liu JJ, Qavi AH et al (2013) Enhanced visualization of the choroido-scleral interface using swept-source OCT. Ophthalmic Surg Lasers Imaging Retina 44:S40–S42CrossRefPubMedGoogle Scholar
  3. Adhi M, Liu JJ, Qavi AH et al (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272–1281CrossRefPubMedGoogle Scholar
  4. Alasil T, Ferrara D, Adhi M et al (2015) En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol 159:634–643CrossRefPubMedGoogle Scholar
  5. Aptel F, Denis P (2010) Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology 117:3–10CrossRefPubMedGoogle Scholar
  6. Aptel F, Chiquet C, Beccat S et al (2012) Biometric evaluation of anterior chamber changes after physiologic pupil dilation using Pentacam and anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 53:4005–4010CrossRefPubMedGoogle Scholar
  7. Baskaran M, Ho SW, Tun TA et al (2013) Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography. Ophthalmology 120:2226–2231CrossRefPubMedGoogle Scholar
  8. Copete S, Flores-Moreno I, Montero JA et al (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338CrossRefPubMedGoogle Scholar
  9. Cumba RJ, Radhakrishnan S, Bell NP et al (2012) Reproducibility of scleral spur identification and angle measurements using fourier domain anterior segment optical coherence tomography. J Ophthalmol 2012:487309PubMedPubMedCentralGoogle Scholar
  10. Drexler W, Liu M, Kumar A et al (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19:071412CrossRefPubMedGoogle Scholar
  11. Ellabban AA, Tsujikawa A, Matsumoto A et al (2013a) Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. Am J Ophthalmol 155:320–328CrossRefPubMedGoogle Scholar
  12. Ellabban AA, Tsujikawa A, Ooto S et al (2013b) Focal choroidal excavation in eyes with central serous chorioretinopathy. Am J Ophthalmol 156:673–683CrossRefPubMedGoogle Scholar
  13. Ferrara D, Mohler KJ, Waheed N et al (2014) En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121:719–726CrossRefPubMedGoogle Scholar
  14. Flores-Moreno I, Arias-Barquet L, Rubio-Caso MJ et al (2015) En face swept-source optical coherence tomography in neovascular age-related macular degeneration. Br J Ophthalmol 99:306322CrossRefGoogle Scholar
  15. Forte R, Cennamo GL, Finelli ML et al (2009) Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye 23:2071–2078CrossRefPubMedGoogle Scholar
  16. Francis JH, Pang CE, Abramson DH et al (2015) Swept-source optical coherence tomography features of choroidal nevi. Am J Ophthalmol 159:169–176CrossRefPubMedGoogle Scholar
  17. Giani A, Cigada M, Choudhry N et al (2010) Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol 150:815–824CrossRefPubMedGoogle Scholar
  18. Grulkowski I, Liu JJ, Zhang JY et al (2013) Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 120:2184–2190CrossRefPubMedGoogle Scholar
  19. Hamzah F, Shinojima A, Mori R et al (2014) Choroidal thickness measurement by enhanced depth imaging and swept-source optical coherence tomography in central serous chorioretinopathy. BMC Ophthalmol 14:145CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hayashi Y, Mitamura Y, Egawa M et al (2014) Swept-source optical coherence tomographic findings of choroidal osteoma. Case Rep Ophthalmol 5:195–202CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ikuno Y, Maruko I, Yasuno Y et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540CrossRefPubMedGoogle Scholar
  23. Itakura H, Kishi S (2011) Aging changes of vitreomacular interface. Retina 31:1400–1404CrossRefPubMedGoogle Scholar
  24. Itakura H, Kishi S, Li D et al (2013) Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 54:3102–3107CrossRefPubMedGoogle Scholar
  25. Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kawana K, Yasuno Y, Yatagai T et al (2007) High-speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession. Acta Ophthalmol Scand 85:684–685CrossRefPubMedGoogle Scholar
  27. Lai I, Mak H, Lai G et al (2013) Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology 120:1144–1149CrossRefPubMedGoogle Scholar
  28. Li D, Kishi S, Itakura H et al (2014) Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 55:2412–2416CrossRefPubMedGoogle Scholar
  29. Lim TH, Laude A, Tan CS (2010) Polypoidal choroidal vasculopathy: an angiographic discussion. Eye 24:483–490CrossRefPubMedGoogle Scholar
  30. Lim LS, Cheung G, Lee SY (2014) Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia. Eye 28:488–491CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu S, Yu M, Ye C et al (2011) Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci 52:8598–8603CrossRefPubMedGoogle Scholar
  32. Liu JJ, Witkin AJ, Adhi M et al (2014) Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One 9:e102950. doi: 10.1371/journal.pone.0102950 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu G, Tan O, Gao SS et al (2015) Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography. Optics express 23:9824–34Google Scholar
  34. Lopilly Park HY, Lee NY, Choi JA et al (2014) Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia. Am J Ophthalmol 157:876–884CrossRefPubMedGoogle Scholar
  35. Mak H, Xu G, Leung CK (2013) Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology 120:2517–2524CrossRefPubMedGoogle Scholar
  36. Mansouri K, Nuyen B, Weinreb N (2013) Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography. Expert Rev Med Devices 10:621–628CrossRefPubMedGoogle Scholar
  37. Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636CrossRefPubMedGoogle Scholar
  38. McKee H, Ye C, Yu M et al (2013) Anterior chamber angle imaging with swept-source optical coherence tomography: detecting the scleral spur, Schwalbe’s Line, and Schlemm’s Canal. J Glaucoma 22:468–472CrossRefPubMedGoogle Scholar
  39. Moult E, Choi W, Waheed NK et al (2014) Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 45:496–505CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429CrossRefPubMedGoogle Scholar
  41. Ohno-Matsui K, Akiba M, Modegi T et al (2012a) Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. Invest Ophthalmol Vis Sci 53:6046–6061CrossRefPubMedGoogle Scholar
  42. Ohno-Matsui K, Akiba M, Moriyama M et al (2012b) Acquired optic nerve and peripapillary pits in pathologic myopia. Ophthalmology 119:1685–1692CrossRefPubMedGoogle Scholar
  43. Ohno-Matsui K, Akiba M, Moriyama M et al (2012c) Intrachoroidal cavitation in macular area of eyes with pathologic myopia. Am J Ophthalmol 154:382–393CrossRefPubMedGoogle Scholar
  44. Ohno-Matsui K, Shimada N, Akiba M et al (2013) Characteristics of intrachoroidal cavitation located temporal to optic disc in highly myopic eyes. Eye 27:630–638CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ouyang Y, Heussen FM, Mokwa N et al (2011) Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7019–7026CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pedinielli A, Souied EH, Perrenoud F et al (2013) In vivo visualization of perforating vessels and focal scleral ectasia in pathological myopia. Invest Ophthalmol Vis Sci 54:7637–7643CrossRefPubMedGoogle Scholar
  47. Pierro L, Giatsidis SM, Mantovani E et al (2010) Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments. Am J Ophthalmol 150:199–204CrossRefPubMedGoogle Scholar
  48. Potsaid B, Baumann B, Huang D et al (2010) Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express 18:20029–20048CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sakata LM, Lavanya R, Friedman DS et al (2008) Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol 126:181–185CrossRefPubMedGoogle Scholar
  50. Sato T, Mrejen S, Spaide RF (2013) Multimodal imaging of optic disc drusen. Am J Ophthalmol 156:275–282CrossRefPubMedGoogle Scholar
  51. Sayanagi K, Gomi F, Akiba M et al (2015) En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol 99:29–35CrossRefPubMedGoogle Scholar
  52. Sebag J, Balazs EA (1985) Human vitreous fibres and vitreoretinal disease. Trans Ophthalmol Soc 104:123–128Google Scholar
  53. Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30:1867–1871PubMedGoogle Scholar
  54. Shinohara K, Moriyama M, Shimada N et al (2013) Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging. Eye (Lond) 27:1233–1241CrossRefGoogle Scholar
  55. Spaide RF (2014) Visualization of the posterior vitreous with dynamic focusing and windowed averaging swept source optical coherence tomography. Am J Ophthalmol 158:1267–1274CrossRefPubMedGoogle Scholar
  56. Srinivasan VJ, Huber R, Gorczynska I et al (2007) High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt Lett 32:361–363CrossRefPubMedGoogle Scholar
  57. Stanga PE, Sala-Puigdollers A, Caputo S et al (2014) In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography. Am J Ophthalmol 157:397–404CrossRefPubMedGoogle Scholar
  58. Takahashi A, Ooto S, Yoshimura N (2013) High-penetration optical coherence tomography and enhanced depth imaging in presumed retinal pigment epithelial hamartoma. Retin Cases Brief Rep 7:179–182CrossRefPubMedGoogle Scholar
  59. Takayama K, Hangai M, Kimura Y et al (2013) Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 54:4798–4807CrossRefPubMedGoogle Scholar
  60. Tan CS, Cheong KX (2014) Macular choroidal thicknesses in healthy adults--relationship with ocular and demographic factors. Invest Ophthalmol Vis Sci 55:6452–6458CrossRefPubMedGoogle Scholar
  61. Tan CS, Li KZ, Lim TH (2012a) A novel technique of adjusting segmentation boundary layers to achieve comparability of retinal thickness and volumes between spectral domain and time domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:5515–5519CrossRefPubMedGoogle Scholar
  62. Tan CS, Ouyang Y, Ruiz H et al (2012b) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:261–266CrossRefPubMedGoogle Scholar
  63. Tan CS, Cheong KX, Lim LW et al (2014a) Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults. Br J Ophthalmol 98:339–344CrossRefPubMedGoogle Scholar
  64. Tan CS, Li KZ, Lim TH (2014b) Calculating the predicted retinal thickness from spectral domain and time domain optical coherence tomography – comparison of different methods. Graefes Arch Clin Exp Ophthalmol 252:1491–1499CrossRefPubMedGoogle Scholar
  65. Tan CS, Ngo WK, Lim LW et al (2014c) A novel classification of the vascular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes. Br J Ophthalmol 98:1528–1533CrossRefPubMedGoogle Scholar
  66. Tan CS, Chan JC, Cheong KX et al (2015a) Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina 46:172–179CrossRefPubMedGoogle Scholar
  67. Tan CS, Ngo WK, Chen JP et al (2015b) EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy. Br J Ophthalmol 99:624–628CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tan CS, Ngo WK, Cheong KX (2015c) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99:354–358CrossRefPubMedGoogle Scholar
  69. Tun TA, Baskaran M, Zheng C et al (2013) Assessment of trabecular meshwork width using swept source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251:1587–1592CrossRefPubMedGoogle Scholar
  70. Tun TA, Baskaran M, Perera SA et al (2014) Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 252:1127–1132CrossRefPubMedGoogle Scholar
  71. Ueda-Arakawa N, Ooto S, Ellabban AA et al (2014) Macular choroidal thickness and volume of eyes with reticular pseudodrusen using swept-source optical coherence tomography. Am J Ophthalmol 157:994–1004CrossRefPubMedGoogle Scholar
  72. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK et al (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437CrossRefPubMedGoogle Scholar
  73. Yamashita T, Yamashita T, Shirasawa M et al (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53:1102–1107CrossRefPubMedGoogle Scholar
  74. Yasuno Y, Miura M, Kawana K et al (2009) Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 50:405–413CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Fundus Image Reading Center, National Healthcare Group Eye InstituteSingaporeSingapore
  2. 2.Doheny Eye Institute, David Geffen School of MedicineUniversity of California – Los AngelesLos AngelesUSA

Personalised recommendations