Retinal Dystrophies and Degenerations



Retinal dystrophies comprise of a broad group of disorders which affect the retina and often lead to significant vision loss. This group of inherited diseases is characterised by progressive photoreceptor loss. The underlying genetic defect has been identified in many of these conditions, leading to a better understanding of the pathogenesis and the possibility of novel therapy. The high resolution of spectral domain optical coherence tomography (SD-OCT) images allows detailed examination of the retinal structure in many diseases. Detailed examination by SD-OCT offers much better ability to correlate with symptoms and progression, compared to fundus examination alone.


Optical Coherence Tomography Retinal Pigment Epithelial Retinal Nerve Fibre Layer Retinitis Pigmentosa Cystoid Macular Oedema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrade RE, Farah ME, Costa RA (2003) Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in best disease. Am J Ophthalmol 136:1179–1181PubMedCrossRefGoogle Scholar
  2. Andreoli MT, Lim JI (2014) Optical coherence tomography retinal thickness and volume measurements in X-linked retinoschisis. Am J Ophthalmol 158:567–573PubMedCrossRefGoogle Scholar
  3. Anmarkrud N (1979) Fundus fluorescein angiography in fundus flavimaculatus and Stargardt’s disease. Acta Ophthalmol (Copenh) 57:172–182CrossRefGoogle Scholar
  4. Apushkin MA, Fishman GA, Rajagopalan AS (2005) Fundus findings and longitudinal study of visual acuity loss in patients with X-linked retinoschisis. Retina 25:612–618PubMedCrossRefGoogle Scholar
  5. Armstrong JD, Meyer D, Xu S et al (1998) Long-term follow-up of stargardt’s disease and fundus flavimaculatus. Ophthalmology 105:448–457PubMedCrossRefGoogle Scholar
  6. Benhamou N et al (2003) Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol 135:362–367PubMedCrossRefGoogle Scholar
  7. Benhamou N et al (2004) Adult-onset foveomacular vitelliform dystrophy with OCT 3. Am J Ophthalmol 138:294–296PubMedCrossRefGoogle Scholar
  8. Bernauer W, Daicker B (1992) Bietti’s corneal-retinal dystrophy. A 16-year progression. Retina 12:18–20PubMedCrossRefGoogle Scholar
  9. Berson EL et al (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251PubMedCrossRefGoogle Scholar
  10. Birch DG et al (2013) Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol 131:1143–1150PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bird AC (1995) Retinal photoreceptor dystrophies LI. Edward Jackson Memorial Lecture. Am J Ophthalmol 119:543–562PubMedCrossRefGoogle Scholar
  12. Boon CJ et al (2007a) Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 125:1100–1106PubMedCrossRefGoogle Scholar
  13. Boon CJ et al (2007b) Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol 91:1504–1511PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brecher R, Bird AC (1990) Adult vitelliform macular dystrophy. Eye (Lond) 4:210–215CrossRefGoogle Scholar
  15. Bundey S, Crews SJ (1984) A study of retinitis pigmentosa in the City of Birmingham. I Prevalence. J Med Genet 21:417–420PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bunker CH et al (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365PubMedCrossRefGoogle Scholar
  17. Chen H et al (2013) Functional and clinical findings in 3 female siblings with crystalline retinopathy. Doc Ophthalmol 116:237–243CrossRefGoogle Scholar
  18. Cho SC et al (2013) Morphologic characteristics of the outer retina in cone dystrophy on spectral-domain optical coherence tomography. Korean J Ophthalmol 27:19–27PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chung MM et al (2001) Visual outcome following subretinal hemorrhage in Best disease. Retina 21:575–580PubMedCrossRefGoogle Scholar
  20. Chung H et al (2006) Optical coherence tomography in the diagnosis and monitoring of cystoid macular edema in patients with retinitis pigmentosa. Retina 26:922–927PubMedCrossRefGoogle Scholar
  21. Cibis GW, Morey M, Harris DJ (1980) Dominantly inherited macular dystrophy with flecks (Stargardt). Arch Ophthalmol 98:1785–1789PubMedCrossRefGoogle Scholar
  22. Coscas F et al (2014) Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci 55:64–69PubMedCrossRefGoogle Scholar
  23. Dhoot DS et al (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97:66–69PubMedCrossRefGoogle Scholar
  24. Duncker T et al (2014) Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 55:1471–1482PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eagle RC, Lucier AC, Bernardino VB et al (1980) Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 87:1189–1200PubMedCrossRefGoogle Scholar
  26. Ferrara DC et al (2010) Multimodal fundus imaging in best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 248:1377–1386PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fishman GA (1978) Retinitis pigmentosa: visual loss. Arch Ophthalmol 96:1185–1188PubMedCrossRefGoogle Scholar
  28. Fishman GA (1985) Electrophysiology and inherited retinal disorders. Doc Ophthalmol 60:107–119PubMedCrossRefGoogle Scholar
  29. Fishman GA, Anderson RJ, Lourenco P (1985) Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol 69:263–266PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fishman GA et al (1993) Visual acuity in patients with best vitelliform macular dystrophy. Ophthalmology 100:1665–1670PubMedCrossRefGoogle Scholar
  31. Fong AM et al (2009) Bietti’s crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. Int Ophthalmol 29:459–470PubMedCrossRefGoogle Scholar
  32. Francis PJ (2006) Genetics of inherited retinal disease. J R Soc Med 99:189–191PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fujinami K et al (2013a) A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol 155:1075–1088PubMedCrossRefGoogle Scholar
  34. Fujinami K et al (2013b) A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci 54:8181–8190PubMedCrossRefGoogle Scholar
  35. Fujinami K et al (2013c) Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol 156:487–501PubMedCrossRefGoogle Scholar
  36. Gass JD (1974) A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 72:139–156PubMedPubMedCentralGoogle Scholar
  37. Gass JD (1977) Stereoscopic atlas of macular diseases: diagnosis and treatment. Mosby Inc., St. LouisGoogle Scholar
  38. Gerber S, Rozet JM, Bonneau D et al (1995) A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet 56:396PubMedPubMedCentralGoogle Scholar
  39. Goura P, Carr RE (1964) Electrophysiological studies in early retinitis pigmentosa. Arch Ophthalmol 72:104–110CrossRefGoogle Scholar
  40. Gregori NZ, Lam BL, Gregori G et al (2013) Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis. Ophthalmology 120:169–174PubMedCrossRefGoogle Scholar
  41. Grey RH, Blach RK, Barnard WM (1977) Bull’s eye maculopathy with early cone degeneration. Br J Ophthalmol 61:702–718PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grover S, Fishman GA, Brown J Jr (1998) Patterns of visual field progression in patients with retinitis pigmentosa. Ophthalmology 105:1069–1075PubMedCrossRefGoogle Scholar
  43. Hadden OB, Gass JD (1976) Fundus flavimaculatus and stargardt’s disease. Am J Ophthalmol 82:527–539PubMedCrossRefGoogle Scholar
  44. Hagiwara A, Yamamoto S, Ogata K et al (2011) Macular abnormalities in patients with retinitis pigmentosa: prevalence on OCT examination and outcomes of vitreoretinal surgery. Acta Ophthalmol 89:122–125CrossRefGoogle Scholar
  45. Hajali M, Fishman GA (2009) The prevalence of cystoid macular edema on optical coherence tomography in retinitis pigmentosa patients without cystic changes on fundus examination. Eye (Lond) 23:915–919CrossRefGoogle Scholar
  46. Hajali M, Fishman GA, Anderson RJ (2008) The prevalence of cystoid macular edema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol 92:1065–1068PubMedCrossRefGoogle Scholar
  47. Halford S, Liew G, Mackay DS et al (2014) Detailed phenotypic and genotypic characterization of Bietti crystalline dystrophy. Ophthalmology 121:1174–1184PubMedCrossRefGoogle Scholar
  48. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  50. Holopigian K, Greenstein V, Seiple W et al (1996) Rates of change differ among measures of visual function in patients with retinitis pigmentosa. Ophthalmology 103:398–405PubMedCrossRefGoogle Scholar
  51. Hood DC, Lin CE, Lazow MA et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50:2328PubMedCrossRefGoogle Scholar
  52. Hood DC, Ramachandran R, Holopigian K et al (2011a) Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa. Biomed Opt Express 2:1106–1114PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hood DC, Lazow MA, Locke KG, Greenstein VC et al (2011b) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:101PubMedPubMedCentralCrossRefGoogle Scholar
  54. Inui E, Oishi A, Oishi M et al (2014) Tomographic comparison of cone-rod and rod-cone retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 252:1065–1069PubMedCrossRefGoogle Scholar
  55. Jackson H, Garway-Heath D, Rosen P et al (2001) Outcome of cataract surgery in patients with retinitis pigmentosa. Br J Ophthalmol 85:936–938PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jacobson DM, Thompson HS, Bartley JA (1989) X-linked progressive cone dystrophy. Clinical characteristics of affected males and female carriers. Ophthalmology 96:885–895PubMedCrossRefGoogle Scholar
  57. Kaiser-Kupfer MI, Chan CC, Markello TC et al (1994) Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy. Am J Ophthalmol 118:569–582PubMedCrossRefGoogle Scholar
  58. Kim YJ, Joe SG, Lee DH et al (2013) Correlations between spectral-domain OCT measurements and visual acuity in cystoid macular edema associated with retinitis pigmentosa SD-OCT measurements and visual acuity in RP with CME. Invest Ophthalmol Vis Sci 54:1303–1309PubMedCrossRefGoogle Scholar
  59. Kojima H, Otani A, Ogino K et al (2012) Outer retinal circular structures in patients with Bietti crystalline retinopathy. Br J Ophthalmol 96:390–393PubMedCrossRefGoogle Scholar
  60. Krill AE, Deutman AF, Fishman M (1973) The cone degenerations. Doc Ophthalmol 35:1–80PubMedCrossRefGoogle Scholar
  61. Kuroda M, Hirami Y, Hata M et al (2014) Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. Clin Ophthalmol 8:435PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lima LH, Sallum JM, Spaide RF (2013) Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients. Retina 33:1877–1880PubMedCrossRefGoogle Scholar
  63. Lois N, Holder GE, Fitzke FW et al (1999) Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus. Invest Ophthalmol Vis Sci 40:2668–2675PubMedGoogle Scholar
  64. Mansour AM, Uwaydat SH, Chan CC (2007) Long-term follow-up in Bietti crystalline dystrophy. Eur J Ophthalmol 17:680–682PubMedPubMedCentralGoogle Scholar
  65. Marshall J (1988) Pathologic findings and putative mechanisms in retinitus pigmentosa. In: Heckenlively JR (ed) Retinitis pigmentosa. Lippincott, PhiladelphiaGoogle Scholar
  66. Mauldin WM, O’Connor PS (1981) Crystalline retinopathy (Bietti’s tapetoretinal degeneration without marginal corneal dystrophy). Am J Ophthalmol 92:640–646PubMedCrossRefGoogle Scholar
  67. Michaelides M, Hunt DM, Moore AT (2003) The genetics of inherited macular dystrophies. J Med Genet 40:641–650PubMedPubMedCentralCrossRefGoogle Scholar
  68. Michaelides M, Hunt DM, Moore AT (2004a) The cone dysfunction syndromes. Br J Ophthalmol 88:291–297PubMedPubMedCentralCrossRefGoogle Scholar
  69. Michaelides M, Aligianis IA, Ainsworth JR et al (2004b) Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 45:1975–1982PubMedCrossRefGoogle Scholar
  70. Mohler CW, Fine SL (1981) Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology 88:688–692PubMedCrossRefGoogle Scholar
  71. Murakami T, Akimoto M, Ooto S et al (2008) Association between abnormal autofluorescence and photoreceptor disorganization in retinitis pigmentosa. Am J Ophthalmol 145:687–694PubMedCrossRefGoogle Scholar
  72. Nakamura M, Ito S, Terasaki H et al (2001) Japanese X-linked juvenile retinoschisis: conflict of phenotype and genotype with novel mutations in the XLRS1 gene. Arch Ophthalmol 119:1553–1554PubMedGoogle Scholar
  73. Noble KG, Scher BM, Carr RE (1978) Polymorphous presentations in vitelliform macular dystrophy: subretinal neovascularisation and central choroidal atrophy. Br J Ophthalmol 62:561–570PubMedPubMedCentralCrossRefGoogle Scholar
  74. Oishi A, Ogino K, Nakagawa S et al (2013) Longitudinal analysis of the peripapillary retinal nerve fiber layer thinning in patients with retinitis pigmentosa. Eye (Lond) 27:597–604CrossRefGoogle Scholar
  75. Ponjavic V, Eksandh L, Andréasson S et al (1999) Clinical expression of Best’s vitelliform macular dystrophy in Swedish families with mutations in the bestrophin gene. Ophthalmic Genet 20:251–257PubMedCrossRefGoogle Scholar
  76. Puche N, Querques G, Benhamou N et al (2010) High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol 94:1190–1196PubMedCrossRefGoogle Scholar
  77. Querques G, Leveziel N, Benhamou N et al (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162PubMedPubMedCentralCrossRefGoogle Scholar
  78. Querques G, Angulo Bocco MC, Soubrane G et al (2008) Intravitreal ranibizumab (Lucentis) for choroidal neovascularization associated with vitelliform macular dystrophy. Acta Ophthalmol 86:694–695PubMedCrossRefGoogle Scholar
  79. Querques G, Zerbib J, Santacroce R et al (2009a) Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1gene. Mol Vis 15:2960PubMedPubMedCentralGoogle Scholar
  80. Querques G, Regenbogen M, Soubrane G et al (2009b) High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy. Surv Ophthalmol 54:311–316PubMedCrossRefGoogle Scholar
  81. Querques G, Prato R, Coscas G et al (2009c) In vivo visualization of photoreceptor layer and lipofuscin accumulation in stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography. Clin Ophthalmol 3:693PubMedPubMedCentralCrossRefGoogle Scholar
  82. Querques G, Forte R, Querques L et al (2011) Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol 152:304–313PubMedCrossRefGoogle Scholar
  83. Ripps H, Noble KG, Greenstein VC et al (1987) Progressive cone dystrophy. Ophthalmology 94:1401–1409PubMedCrossRefGoogle Scholar
  84. Robson AG, Saihan Z, Jenkins SA et al (2006) Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90:472–479PubMedPubMedCentralCrossRefGoogle Scholar
  85. Robson AG, Webster AR, Michaelides M et al (2010) Cone dystrophy with supernormal rod electroretinogram: a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology. Retina 30:51–62PubMedCrossRefGoogle Scholar
  86. Rosenthal R, Bakall B, Kinnick T et al (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180PubMedGoogle Scholar
  87. Rossi S, Testa F, Li A et al (2013) Clinical and genetic features in Italian Bietti crystalline dystrophy patients. Br J Ophthalmol 97:174–179PubMedCrossRefGoogle Scholar
  88. Rotenstreich Y, Fishman GA, Anderson RJ (2003) Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology 110:1151–1158PubMedCrossRefGoogle Scholar
  89. Sadowski B, Zrenner E (1997) Cone and rod function in cone degenerations. Vision Res 37:2303–2314PubMedCrossRefGoogle Scholar
  90. Sahel J, Bonnel S, Mrejen S et al (2010) Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 47:160–167PubMedCrossRefGoogle Scholar
  91. Saito W, Yamamoto S, Hayashi M et al (2003) Morphological and functional analyses of adult onset vitelliform macular dystrophy. Br J Ophthalmol 87:758–762PubMedPubMedCentralCrossRefGoogle Scholar
  92. Saxena S, Mishra N, Meyer CH (2012) Three-dimensional spectral domain optical coherence tomography in Stargardt disease and fundus flavimaculatus. J Ocul Biol Dis Infor 5:13–18PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schatz P, Bitner H, Sander B et al (2010) Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Invest Ophthalmol Vis Sci 51:4754–4765PubMedCrossRefGoogle Scholar
  94. Sen P, Ray R, Ravi P (2011) Electrophysiological findings in Bietti’s crystalline dystrophy. Clin Exp Optom 94:302–308PubMedCrossRefGoogle Scholar
  95. Simunovic MP, Moore AT (1998) The cone dystrophies. Eye (Lond) 12:553–565CrossRefGoogle Scholar
  96. Sohn EH, Francis PJ, Duncan JL et al (2009) Phenotypic variability due to a novel Glu292Lys variation in exon 8 of the BEST1 gene causing best macular dystrophy. Arch Ophthalmol 127:913–920PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sun H, Tsunenari T, Yau W et al (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99:4008–4013PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tantri A, Vrabec TR, Cu-Unjieng A et al (2004) X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 49:214–230PubMedCrossRefGoogle Scholar
  99. Thorburn W, Nordstrom S (1978) EOG in a large family with hereditary macular degeneration. (Best’s vitelliform macular dystrophy) identification of gene carriers. Acta Ophthalmol 56:455–464CrossRefGoogle Scholar
  100. Toto L, Carpineto P, Parodi MB et al (2013) Spectral domain optical coherence tomography and in vivo confocal microscopy imaging of a case of Bietti’s crystalline dystrophy. Clin Exp Optom 96:39–45PubMedCrossRefGoogle Scholar
  101. Triolo G, Pierro L, Parodi MB et al (2013) Spectral domain optical coherence tomography findings in patients with retinitis pigmentosa. Ophthalmic Res 50:160–164PubMedCrossRefGoogle Scholar
  102. Urrets-Zavalía JA, Venturino JP, Mercado J et al (2006) Macular and extramacular optical coherence tomography findings in X-linked retinoschisis. Ophthalmic Surg Lasers Imaging 38:417–422Google Scholar
  103. vanHuet RA, Estrada-Cuzcano A, Banin E et al (2013) Clinical characteristics of rod and cone photoreceptor dystrophies in patients with mutations in the C8orf37 gene. Invest Ophthalmol Vis Sci 54:4683–4690CrossRefGoogle Scholar
  104. Vincent A, Robson AG, Neveu MM et al (2013) A phenotype–genotype correlation study of X-linked retinoschisis. Ophthalmology 120:1454–1464PubMedCrossRefGoogle Scholar
  105. Vine AK, Schatz H (1980) Adult-onset foveomacular pigment epithelial dystrophy. Am J Ophthalmol 89:680–691PubMedCrossRefGoogle Scholar
  106. Wakabayashi T, Sawa M, Gomi F et al (2010) Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol 88:e177–e183PubMedCrossRefGoogle Scholar
  107. Wiznia RA, Perina B, Noble KG (1981) Vitelliform macular dystrophy of late onset. Br J Ophthalmol 65:866–868PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xu H, Ying L, Lin P et al (2013) Optical coherence tomography for multifocal vitelliform macular dystrophy. Optom Vis Sci 90:94–99PubMedCrossRefGoogle Scholar
  109. Yang HS, Lee JB, Yoon YH et al (2014) Correlation between spectral-domain OCT findings and visual acuity in X-linked retinoschisis OCT characteristics of juvenile retinoschisis. Invest Ophthalmol Ves Sci 55:3029–3036CrossRefGoogle Scholar
  110. Yeoh J, Rahman W, Chen F et al (2010) Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1719–1728PubMedCrossRefGoogle Scholar
  111. Yin H, Jin C, Fang X et al (2014) Molecular analysis and phenotypic study in 14 Chinese families with Bietti crystalline dystrophy. PLoS One 9:e94960PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yu J, Ni Y, Keane PA et al (2010) Foveomacular schisis in Juvenile X-linked retinoschisis: an optical coherence tomography study. Am J Ophthalmol 149:973–978PubMedCrossRefGoogle Scholar
  113. Zahlava J, Lestak J, Karel I (2014) Optical coherence tomography in progressive cone dystrophy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:628–634PubMedGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Singapore Eye Research Institute, Singapore National Eye CenterSingaporeSingapore

Personalised recommendations