Advertisement

Vitreomacular Traction and Epiretinal Membranes

  • Michael D. Tibbetts
  • Jay S. Duker
Chapter

Abstract

Optical coherence tomography (OCT) has transformed the understanding of the anatomy of the vitreomacular interface (VMI) and pathologic processes that occur there. Since the first description of macular diseases with OCT in 1995, progressive advances in technology have made OCT the gold standard for the diagnosis and management of VMI diseases (Puliafito et al. 1995; Stalmans et al. 2013). Clinical biomicroscopic examination and other imaging modalities are limited in their capabilities to fully diagnose and document diseases of the VMI as vitreous membranes are often clinically invisible. Spectral domain OCT (SD-OCT) provides high-resolution images of the VMI with noninvasive capture and fast acquisition. SD-OCT enables the clinician to more accurately diagnose diseases of the VMI, informs treatment, and guides postoperative care (Folgar et al. 2012). The approval of ocriplasmin (Jetrea, ThromboGenics, Iselin, New Jersey) for pharmacologic vitreolysis of “symptomatic vitreomacular adhesion” has further stimulated interest in understanding the pathophysiology of the VMI (FDA 2012). These developments led to the formation of the International Vitreomacular Traction Study (IVTS) Group to create a strictly anatomic OCT-based classification system for the VMI and more specifically the vitreomacular interface (VMI) (Duker et al. 2013). The panel of vitreoretinal disease experts provided anatomic definitions and classification of vitreomacular adhesion (VMA), vitreomacular traction (VMT), and full-thickness macular hole (FTMH). This classification system and the science upon which it is based inform the current diagnosis and management of diseases of the VMI.

Keywords

Optical Coherence Tomography Macular Hole Diabetic Macular Edema Cystoid Macular Edema Internal Limit Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344CrossRefPubMedGoogle Scholar
  2. Chang S, Gregory-Roberts EM, Park S, Laud K, Smith SD, Hoang QV (2013) Double peeling during vitrectomy for macular pucker: the Charles L. Schepens Lecture. JAMA ophthalmol 131:525–530. doi: 10.1001/jamaophthalmol.2013.2176 CrossRefPubMedGoogle Scholar
  3. Chen W, Mo W, Sun K, Huang X, Zhang YL, Song HY (2009) Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer retina during enzymatic vitrectomy. Curr Eye Res 34:1057–1064. doi: 10.3109/02713680903308487 CrossRefPubMedGoogle Scholar
  4. de Faria JM L, Jalkh AE, Trempe CL, McMeel JW (1999) Diabetic macular edema: risk factors and concomitants. ActaophthalmologicaScandinavica 77:170–175Google Scholar
  5. DeCroos FC, Toth CA, Folgar FA, Pakola S, Stinnett SS, Heydary CS, Burns R, Jaffe GJ (2012) Characterization of vitreoretinal interface disorders using OCT in the interventional phase 3 trials of ocriplasmin. Invest Ophthalmol Vis Sci 53:6504–6511. doi: 10.1167/iovs.12-10370 CrossRefPubMedGoogle Scholar
  6. Do DV, Cho M, Nguyen QD, Shah SM, Handa JT, Campochiaro PA, Zimmer-Galler I, Sung JU, Haller JA (2006) The impact of optical coherence tomography on surgical decision making in epiretinal membrane and vitreomacular traction. Trans Am Ophthalmol Soc 104:161–166PubMedPubMedCentralGoogle Scholar
  7. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi: 10.1016/j.ophtha.2013.07.042 CrossRefPubMedGoogle Scholar
  8. Fahim AT, Khan NW, Johnson MW (2014) Acute panretinal structural and functional abnormalities after intravitreous ocriplasmin injection. JAMA ophthalmol 132:484–486. doi: 10.1001/jamaophthalmol.2013.8142 CrossRefPubMedGoogle Scholar
  9. Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117:798–805. doi: 10.1016/j.ophtha.2009.08.034 CrossRefPubMedGoogle Scholar
  10. FDA U (2012) FDA approves Jetrea for symptomatic vitreomacular adhesion in the eyes [press release]. Updated 18 Oct 2012. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm324369.htm. Accessed 1 June 2014
  11. Folgar FA, Toth CA, DeCroos FC, Girach A, Pakola S, Jaffe GJ (2012) Assessment of retinal morphology with spectral and time domain OCT in the phase III trials of enzymatic vitreolysis. Invest Ophthalmol Vis Sci 53:7395–7401. doi: 10.1167/iovs.12-10379 CrossRefPubMedGoogle Scholar
  12. Freund KB, Shah SA, Shah VP (2013) Correlation of transient vision loss with outer retinal disruption following intravitreal ocriplasmin. Eye 27:773–774. doi: 10.1038/eye.2013.94 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86:902–909CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A (1999) Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol 117:744–751CrossRefPubMedGoogle Scholar
  15. Goldberg RA, Waheed NK, Duker JS (2014) Optical coherence tomography in the preoperative and postoperative management of macular hole and epiretinal membrane. Br J Ophthalmol 98:ii20–3. doi: 10.1136/bjophthalmol-2013-304447 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Haouchine B, Massin P, Gaudric A (2001) Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology 108:15–22CrossRefPubMedGoogle Scholar
  17. Haouchine B, Massin P, Tadayoni R, Erginay A, Gaudric A (2004) Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 138:732–739. doi: 10.1016/j.ajo.2004.06.088 CrossRefPubMedGoogle Scholar
  18. Hikichi T, Fujio N, Akiba J, Azuma Y, Takahashi M, Yoshida A (1997) Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology 104:473–478CrossRefPubMedGoogle Scholar
  19. Hirano Y, Yasukawa T, Ogura Y (2010) Optical coherence tomography guided peeling of macular epiretinal membrane. Clin ophthalmol 5:27–29. doi: 10.2147/OPTH.S16031 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Inoue M, Morita S, Watanabe Y, Kaneko T, Yamane S, Kobayashi S, Arakawa A, Kadonosono K (2011) Preoperative inner segment/outer segment junction in spectral-domain optical coherence tomography as a prognostic factor in epiretinal membrane surgery. Retina 31:1366–1372. doi: 10.1097/IAE.0b013e318203c156 CrossRefPubMedGoogle Scholar
  21. Itakura H, Kishi S, Li D, Akiyama H (2013) Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 54:3102–3107. doi: 10.1167/iovs.13-11769 CrossRefPubMedGoogle Scholar
  22. Jackson TL, Nicod E, Angelis A, Grimaccia F, Prevost AT, Simpson AR, Kanavos P (2013) Vitreous attachment in age-related macular degeneration, diabetic macular edema, and retinal vein occlusion: a systematic review and metaanalysis. Retina 33:1099–1108. doi: 10.1097/IAE.0b013e31828991d6, Jetrea (2012) Iselin, NJ: ThromboGenics IncCrossRefPubMedGoogle Scholar
  23. Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 149:371–382. doi: 10.1016/j.ajo.2009.11.022 CrossRefPubMedGoogle Scholar
  24. Kim JS, Chhablani J, Chan CK, Cheng L, Kozak I, Hartmann K, Freeman WR (2012) Retinal adherence and fibrillary surface changes correlate with surgical difficulty of epiretinal membrane removal. Am J Ophthalmol 153:692–697. doi: 10.1016/j.ajo.2011.08.042 CrossRefPubMedGoogle Scholar
  25. Kishi S, Demaria C, Shimizu K (1986) Vitreous cortex remnants at the fovea after spontaneous vitreous detachment. Int Ophthalmol 9:253–260CrossRefPubMedGoogle Scholar
  26. Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM Jr, Yannuzzi LA (2008) Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol 145:509–517. doi: 10.1016/j.ajo.2007.10.014 CrossRefPubMedGoogle Scholar
  27. Libby RT, Champliaud MF, Claudepierre T, Xu Y, Gibbons EP, Koch M, Burgeson RE, Hunter DD, Brunken WJ (2000) Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J neurosci: the official journal of the Society for Neuroscience 20:6517–6528Google Scholar
  28. Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, Papp A, Simader C, Schmidt-Erfurth U (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120:2620–2629. doi: 10.1016/j.ophtha.2013.05.032 CrossRefPubMedGoogle Scholar
  29. Mirshahi A, Hoehn F, Lorenz K, Hattenbach LO (2009) Incidence of posterior vitreous detachment after cataract surgery. J Cataract Refract Surg 35:987–991. doi: 10.1016/j.jcrs.2009.02.016 CrossRefPubMedGoogle Scholar
  30. Ophir A, Trevino A, Fatum S (2010) Extrafoveal vitreous traction associated with diabetic diffuse macular oedema. Eye 24:347–353. doi: 10.1038/eye.2009.106 CrossRefPubMedGoogle Scholar
  31. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229CrossRefPubMedGoogle Scholar
  32. Rispoli M, Le Rouic JF, Lesnoni G, Colecchio L, Catalano S, Lumbroso B (2012) Retinal surface en face optical coherence tomography: a new imaging approach in epiretinal membrane surgery. Retina 32:2070–2076. doi: 10.1097/IAE.0b013e3182562076 CrossRefPubMedGoogle Scholar
  33. Sebag J (1987) Age-related changes in human vitreous structure. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von GraefesArchiv fur klinische und experimentelleOphthalmologie 225:89–93CrossRefGoogle Scholar
  34. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von GraefesArchiv fur klinische und experimentelleOphthalmologie 242:690–698. doi: 10.1007/s00417-004-0980-1 CrossRefGoogle Scholar
  35. Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30:1867–1871PubMedGoogle Scholar
  36. Seidel G, Weger M, Stadlmuller L, Pichler T, Haas A (2013) Association of preoperative optical coherence tomography markers with residual inner limiting membrane in epiretinal membrane peeling. PLoS One 8:e66217. doi: 10.1371/journal.pone.0066217 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sheard RM, Goodburn SF, Comer MB, Scott JD, Snead MP (2003) Posterior vitreous detachment after neodymium: YAG laser posterior capsulotomy. J Cataract Refract Surg 29:930–934CrossRefPubMedGoogle Scholar
  38. Singh RP, Li A, Bedi R, Srivastava S, Sears JE, Ehlers JP, Schachat AP, Kaiser PK (2014) Anatomical and visual outcomes following ocriplasmin treatment for symptomatic vitreomacular traction syndrome. Br J Ophthalmol 98:356–360. doi: 10.1136/bjophthalmol-2013-304219 CrossRefPubMedGoogle Scholar
  39. Snead DR, James S, Snead MP (2008) Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye 22:1310–1317. doi: 10.1038/eye.2008.36 CrossRefPubMedGoogle Scholar
  40. Sonmez K, Capone A Jr, Trese MT, Williams GA (2008) Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes. Retina 28:1207–1214. doi: 10.1097/IAE.0b013e31817b6b0f CrossRefPubMedGoogle Scholar
  41. Spaide RF, Wong D, Fisher Y, Goldbaum M (2002) Correlation of vitreous attachment and foveal deformation in early macular hole states. Am J Ophthalmol 133:226–229CrossRefPubMedGoogle Scholar
  42. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, Group M-TS (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615. doi: 10.1056/NEJMoa1110823 CrossRefPubMedGoogle Scholar
  43. Stalmans P, Duker JS, Kaiser PK, Heier JS, Dugel PU, Gandorfer A, Sebag J, Haller JA (2013) Oct-based interpretation of the vitreomacular interface and indications for pharmacologic vitreolysis. Retina 33:2003–2011. doi: 10.1097/IAE.0b013e3182993ef8 CrossRefPubMedGoogle Scholar
  44. Steel DH, Lotery AJ (2013) Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye 27(Suppl 1):S1–S21. doi: 10.1038/eye.2013.212 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Suh MH, Seo JM, Park KH, Yu HG (2009) Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am J Ophthalmol 147:473–480. doi: 10.1016/j.ajo.2008.09.020 CrossRefPubMedGoogle Scholar
  46. Tibbetts MD, Reichel E, Witkin AJ (2014) Vision loss after intravitreal ocriplasmin: correlation of spectral-domain optical coherence tomography and electroretinography. JAMA ophthalmol 132:487–490. doi: 10.1001/jamaophthalmol.2013.8258 CrossRefPubMedGoogle Scholar
  47. Uchino E, Uemura A, Ohba N (2001) Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 119:1475–1479CrossRefPubMedGoogle Scholar
  48. Waldstein SM, Ritter M, Simader C, Mayr-Sponer U, Kundi M, Schmidt-Erfurth U (2014) Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration. Am J Ophthalmol 158:328–336.e1. doi: 10.1016/j.ajo.2014.04.02 CrossRefPubMedGoogle Scholar
  49. Watanabe A, Arimoto S, Nishi O (2009) Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology 116:1788–1793. doi: 10.1016/j.ophtha.2009.04.046 CrossRefPubMedGoogle Scholar
  50. Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103:2142–2151CrossRefPubMedGoogle Scholar
  51. Witkin AJ, Patron ME, Castro LC, Reichel E, Rogers AH, Baumal CR, Duker JS (2010) Anatomic and visual outcomes of vitrectomy for vitreomacular traction syndrome. Ophthalmic Surg Lasers Imaging : the official journal of the International Society for Imaging in the Eye 41:425–431. doi: 10.3928/15428877-20100525-07 CrossRefGoogle Scholar
  52. Worst JG (1977) Cisternal systems of the fully developed vitreous body in the young adult. Trans Ophthalmol Soc U K 97:550–554PubMedGoogle Scholar
  53. Yamada N, Kishi S (2005) Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol 139:112–117. doi: 10.1016/j.ajo.2004.08.055 CrossRefPubMedGoogle Scholar
  54. Yang HS, Hong JW, Kim YJ, Kim JG, Joe SG (2014) Characteristics of spontaneous idiopathic epiretinal membrane separation in spectral domain optical coherence tomography. Retina 34:20179–20187. doi: 10.1097/IAE.0000000000000199 Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.New England Eye CenterTufts Medical Center and Tufts Unviersity School of MedicineBostonUSA

Personalised recommendations