Advertisement

Central Serous Chorioretinopathy

  • Angie H. C. Fong
  • Timothy Y. Y. Lai
Chapter

Abstract

Central serous chorioretinopathy (CSC) was originally described by Albrecht von Graefe in 1866 as “central recurrent retinitis” (Von Graefe 1866). Since then our understanding of CSC has progressed considerably. Gass in 1967 named the disease as central serous chorioretinopathy and proposed choriocapillaris hyperpermeability as the cause of CSC (Gass 1967). This hypothesis was later supported by studies using indocyanine green angiography (ICGA) which showed multifocal areas of choroidal vascular hyperpermeability in eyes with CSC.

Keywords

Retinal Pigment Epithelium Fluorescein Angiography Choroidal Thickness Polypoidal Choroidal Vasculopathy Outer Nuclear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn SE, Oh J, Oh JH et al (2013) Three-dimensional configuration of subretinal fluid in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 54:5944–5952CrossRefPubMedGoogle Scholar
  2. Bajarborua D (2001) Long-term follow-up of idiopathic central serous chorioretinopathy without laser. Acta Ophthalmol Scand 79:417–421CrossRefGoogle Scholar
  3. Castro-Correia J, Coutinho MF, Rosas V et al (1992) Long term follow up of central serous retinopathy in 150 patients. Doc Ophthalmol 81:379–386CrossRefPubMedGoogle Scholar
  4. Chan WM, Lam DS, Lai TY et al (2003) Treatment of choroidal neovascularization in central serous chorioretinopathy by photodynamic therapy with verteporfin. Am J Ophthalmol 136:836–845CrossRefPubMedGoogle Scholar
  5. Chan WM, Lai TY, Lai RY et al (2008) Half-dose verteporfin photodynamic therapy for acute central serous chorioretinopathy: one-year results of a randomized controlled trial. Ophthalmology 115:1756–1765CrossRefPubMedGoogle Scholar
  6. Cho M, Athanikar A, Paccione J et al (2010) Optical coherence tomography features of acute central serous chorioretinopathy versus neovascular age-related macular degeneration. Br J Ophthalmol 94:597–599CrossRefPubMedGoogle Scholar
  7. Ciardella AP, Donsoff IM, Huang SJ et al (2004) Polypoidal choroidal vasculopathy. Surv Ophthalmol 49:25–37CrossRefPubMedGoogle Scholar
  8. Cooper BA, Thomas MA (2000) Submacular surgery to remove choroidal neovascularization associated with central serous chorioretinopathy. Am J Ophthalmol 130:187–191CrossRefPubMedGoogle Scholar
  9. Ellabban AA, Tsujikawa A, Ooto S et al (2013) Focal choroidal excavation in eyes with central serous chorioretinopathy. Am J Ophthalmol 56:673–683CrossRefGoogle Scholar
  10. Fawzi AA, Holland GN, Kreiger AE et al (2006) Central serous chorioretinopathy after solid organ transplantation. Ophthalmology 113:805–813CrossRefPubMedGoogle Scholar
  11. Ferrara D, Mohler KJ, Waheed N et al (2014) En-face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121:719–726CrossRefPubMedGoogle Scholar
  12. Fong AH, Li KK, Wong D (2011) Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina 31:502–509CrossRefPubMedGoogle Scholar
  13. Fujimoto H, Gomi F, Wakabayashi T et al (2008) Morphologic changes in acute central serous chorioretinopathy evaluated by Fourier-domain optical coherence tomography. Ophthalmology 115:1494–1500CrossRefPubMedGoogle Scholar
  14. Fung AT, Yannuzzi LA, Freund KB (2012) Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina 32:1829–1837CrossRefPubMedGoogle Scholar
  15. Gäckle HC, Lang GE, Freissler KA et al (1998a) Central serous chorioretinopathy. Clinical, fluorescein angiography and demographic aspects. Ophthalmologe 95:529–533CrossRefPubMedGoogle Scholar
  16. Gäckle HC, Lang GE, Freidler KA et al (1998b) Clinical fluorescein angiographic and demographic aspects in central serous chorioretinopathy. Ophthalmologe 95:529–533CrossRefPubMedGoogle Scholar
  17. Gass JDM (1967) Pathogenesis of disciform detachment of the neuroepithelium: II. Idiopathic central serous choroidopathy. Am J Ophthalmol 63:587–615Google Scholar
  18. Gass JDM (1973) Bullous retinal detachment. An unusual manifestation of idiopathic central serous choroidopathy. Am J Ophthalmol 75:810–882CrossRefPubMedGoogle Scholar
  19. Gass JDM (1991) Central serous chorioretinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol 109:677–681CrossRefPubMedGoogle Scholar
  20. Gass JDM (1992) Bullous retinal detachment and multiple retinal pigment epithelium detachments in patients receiving haemodialysis. Graefes Arch ClinExpOphthalmol 230:454–458CrossRefGoogle Scholar
  21. Gass JDM, Little H (1995) Bilateral bullous exudative retinal detachment complicating idiopathic central serous chorioretinopathy during systemic corticosteroid therapy. Ophthalmology 102:737–747CrossRefPubMedGoogle Scholar
  22. Gupta V, Gupta A, Gupta P et al (2009) Spectral-domain cirrus optical coherence tomography of choroidal striations seen in the acute stage of Vogt-Koyanagi-Harada disease. Am J Ophthalmol 147:148–153CrossRefPubMedGoogle Scholar
  23. Gupta V, Gupta P, Dogra MR et al (2010a) Spontaneous closure of retinal pigment epithelium microrip in the natural course of central serous chorioretinopathy. Eye (Lond) 24:595–599CrossRefGoogle Scholar
  24. Gupta P, Gupta V, Dogra MR et al (2010b) Morphological changes in the retinal pigment epithelium on spectral-domain OCT in the unaffected eyes with idiopathic central serous chorioretinopathy. Int Ophthalmol 30:175–181CrossRefPubMedGoogle Scholar
  25. Hooymans JM (1998) Fibrotic scar formation in central serous chorioretinopathy developed during systemic treatment with corticosteroids. Graefes Arch Clin Exp Ophthalmol 236:876–879CrossRefPubMedGoogle Scholar
  26. Iida T, Spaide RF, Haas A et al (2002) Leopard-spot pattern of yellowish subretinal deposits in central serous chorioretinopathy. Arch Ophthalmol 120:37–42CrossRefPubMedGoogle Scholar
  27. Imamura Y, Fujiwara T, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRefPubMedGoogle Scholar
  28. Imamura Y, Fujiwara T, Spaide RF (2011) Fundus autofluorescence and visual acuity in central serous chorioretinopathy. Ophthalmology 118:700–705CrossRefPubMedGoogle Scholar
  29. Ishihara K, Hangai M, Kita M et al (2009) Acute Vogt-Koyanagi-Harada disease in enhanced spectral-domain optical coherence tomography. Ophthalmology 116:1799–1807CrossRefPubMedGoogle Scholar
  30. Kim HC, Cho WB, Chung H (2012) Morphologic changes in acute central serous chorioretinopathy using spectral domain optical coherence tomography. Korean J Ophthalmol 26:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim SK, Kim SW, Oh J et al (2013) Near-infrared and short-wavelength autofluorescence in resolved central serous chorioretinopathy: association with outer retinal layer abnormalities. Am J Ophthalmol 156:157–164CrossRefPubMedGoogle Scholar
  32. Kitaya N, Nagaoka T, Hikichi T et al (2003) Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol 87:709–712CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koizumi H, Yamagishi T, Yamazaki T et al (2013) Relationship between clinical characteristics of polypoidal choroidal vasculopathy and choroidal vascular hyperpermeability. Am J Ophthalmol 155:305–313CrossRefPubMedGoogle Scholar
  34. Konstantinidis L, Mantel I, Zografos L et al (2010) Intravitreal ranibizumab in the treatment of choroidal neovascularization associated with idiopathic central serous chorioretinopathy. Eur J Ophthalmol 20:955–958PubMedGoogle Scholar
  35. Lanzetta P, Furlan F, Morgante L et al (2008) Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous chorioretinopathy. A pilot study. Eur J Ophthalmol 18:934–940PubMedGoogle Scholar
  36. Lee JH, Lee WK (2014) Choroidal neovascularization associated with focal choroidal excavation. Am J Ophthalmol 157:710–718CrossRefPubMedGoogle Scholar
  37. Lee SB, Kim JY, Kim WJ et al (2013) Bilateral central serous chorioretinopathy with retinal pigment epithelium tears following epidural steroid injection. In J Ophthalmol 61:514–515Google Scholar
  38. Lee CS, Woo SJ, Kim YK et al (2014) Clinical and spectral-domain optical coherence tomography findings in patients with focal choroidal excavation. Ophthalmology 121:1029–1035CrossRefPubMedGoogle Scholar
  39. Lehmann M, Wolff B, Vasseur V et al (2013) Retinal and choroidal changes observed with ‘En-face’ enhanced-depth imaging OCT in central serous chorioretinopathy. Br J Ophthalmol 97:1181–1186CrossRefPubMedGoogle Scholar
  40. Levine R, Brucker AJ, Robinson F (1989) Long-term follow-up of idiopathic central serous chorioretinopathy by fluorescein angiography. Ophthalmology 96:854–859CrossRefPubMedGoogle Scholar
  41. Liegl R, Ulbig MW (2014) Central serous chorioretinopathy. Ophthalmologica 232:65–76, Epub ahead of printCrossRefPubMedGoogle Scholar
  42. Lumbroso B, Savastano MC, Rispoli M et al (2011) Morphologic differences, according to etiology, in pigment epithelial detachments by means of en-face optical coherence tomography. Retina 31:553–558CrossRefPubMedGoogle Scholar
  43. Luk FO, Fok AC, Lee A et al (2015) Focal choroidal excavation in patients with central serous chorioretinopathy. Eye (Lond) 29:453–459Google Scholar
  44. Maruko I, Iida T, Sugano Y et al (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117:1792–1799CrossRefPubMedGoogle Scholar
  45. Maruko I, Iida T, Ojima A et al (2011a) Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy. Retina 31:759–765CrossRefPubMedGoogle Scholar
  46. Maruko I, Tomohiro I, Sugano Y et al (2011b) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 31:510–517CrossRefPubMedGoogle Scholar
  47. Matsumoto H, Sato T, Kishi S (2009) Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 148:105–110CrossRefPubMedGoogle Scholar
  48. Matsunaga H, Nangoh K, Uyama M et al (1995) Occurrence of choroidal neovascularization following photocoagulation treatment for central serous retinopathy. Nippon GankaGakkaiZasshi 99:460–468Google Scholar
  49. Miki A, Kondo N, Yanagisawa S et al (2014) Common variants in the complement factor h gene confer genetic susceptibility to central serous chorioretinopathy. Ophthalmology 121:1067–1072CrossRefPubMedGoogle Scholar
  50. Montero JA, Ruiz-Moreno JM, Fernandez-Muñoz M (2011) Intravitreal bevacizumab to treat choroidal neovascularization following photodynamic therapy in central serous choroidopathy. Eur J Ophthalmol 21:503–505CrossRefPubMedGoogle Scholar
  51. Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429CrossRefPubMedGoogle Scholar
  52. Nair U, Ganekal S, Soman M et al (2012) Correlation of spectral domain optical coherence tomography findings in acute central serous chorioretinopathy with visual acuity. Clin Ophthalmol 6:1949–1954PubMedPubMedCentralGoogle Scholar
  53. Nazari H, Hariri A, Hu Z et al (2014) Choroidal atrophy and loss of choriocapillaris in convalescent stage of Vogt-Koyanagi-Harada disease: in vivo documentation. J Ophthalmic Inflamm Infect 4:9CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nicholson B, Noble J, Forooghian F et al (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58:103–126CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nomura Y, Obata R, Yanagi Y (2012) Intravitreal bevacizumab for iatrogenic choroidal neovascularization due to laser photocoagulation in central serous chorioretinopathy. Jpn J Ophthalmol 56:245–249CrossRefPubMedGoogle Scholar
  56. Odrobina D, Laudańska-Olszewska I, Gozdek P et al (2013) Morphologic changes in the foveal photoreceptor layer before and after laser treatment in acute and chronic central serous chorioretinopathy documented in spectral-domain optical coherence tomography. J Ophthalmol 2013:361513PubMedPubMedCentralGoogle Scholar
  57. Ojima Y, Hangai M, Sasahara M et al (2007) Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 114:2197–2207CrossRefPubMedGoogle Scholar
  58. Ooto S, Tsujikawa A, Mori S et al (2010) Thickness of photoreceptor layers in polypoidal choroidal vasculopathy and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 248:1077–1086CrossRefPubMedGoogle Scholar
  59. Ooto S, Tsujikawa A, Mori S et al (2011) Retinal microstructural abnormalities in central serous chorioretinopathy and polypoidal choroidal vasculopathy. Retina 31:527–534CrossRefPubMedGoogle Scholar
  60. Otsuka S, Ohnba N, Nakao K (2002) A long-term follow-up study of severe variant of central serous chorioretinopathy. Retina 22:25–32CrossRefPubMedGoogle Scholar
  61. Ozdemir O, Erol MK (2014) Morphologic changes and visual outcomes in resolved central serous chorioretinopathy treated with ranibizumab. Cutan Ocul Toxicol 33(2):122–126, Epub ahead of printCrossRefPubMedGoogle Scholar
  62. Polak BCP, Baarsma GS, Snyers B (1995) Diffuse retinal pigment epitheliopathy complicating systemic corticosteroid treatment. Br J Ophthalmol 79:922–925CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pryds A, Larsen M (2013) Foveal function and thickness after verteporfin photodynamic therapy in central serous chorioretinopathy with hyperautofluorescent subretinal deposits. Retina 33:128–135CrossRefPubMedGoogle Scholar
  64. Quin G, Liew G, Ho IV et al (2013) Diagnosis and interventions for central serous chorioretinopathy: review and update. Clin Exp Ophthalmol 41:187–200CrossRefPubMedGoogle Scholar
  65. Reibaldi M, Cardascia N, Longo A et al (2010) Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. Am J Ophthalmol 149:307–315CrossRefPubMedGoogle Scholar
  66. Rogers AH, Martidis A, Greenberg PB et al (2002) Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 134:566–576CrossRefPubMedGoogle Scholar
  67. Roisman L, Magalhães FP, Lavinsky D et al (2013) Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial. Ophthalmic Surg Lasers Imaging Retina 44:465–470CrossRefPubMedGoogle Scholar
  68. Ross A, Ross AH, Mohamed Q (2011) Review and update of central serous chorioretinopathy. Curr Opin Ophthalmol 22:166–173CrossRefPubMedGoogle Scholar
  69. Sahu DK, Namperumalsamy P, Hilton GF et al (2000) Bullous variant of idiopathic central serous chorioretinopathy. Br J Ophthalmol 84:485–492CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sakata VM, da Silva FT, Hirata CE et al (2014) Choroidal bulging in patients with Vogt-Koyanagi-Harada disease in the non-acute uveitic stage. J Ophthalmic Inflamm Infect 4:6CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sasahara M, Tsujikawa A, Musashi K et al (2006) Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol 142:601–607CrossRefPubMedGoogle Scholar
  72. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R (2007) Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 27:589–594CrossRefPubMedGoogle Scholar
  73. Schatz H, McDonald HR, Johnson RN et al (1995) Subretinal fibrosis in central serous chorioretinopathy. Ophthalmology 102:1077–1088CrossRefPubMedGoogle Scholar
  74. Sekiryu T, Iida T, Maruko I et al (2010) Infrared fundus autofluorescence and central serous chorioretinopathy. Invest Ophthalmol Vis Sci 51:4956–4962CrossRefPubMedGoogle Scholar
  75. Shinojima A, Hirose T, Mori R et al (2010) Morphologic findings in acute central serous chorioretinopathy using spectral domain-optical coherence tomography with simultaneous angiography. Retina 30:193–202CrossRefPubMedGoogle Scholar
  76. Song IS, Shin YU, Lee BR (2012) Time-periodic characteristics in the morphology of idiopathic central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography. Am J Ophthalmol 154:366–375CrossRefPubMedGoogle Scholar
  77. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefPubMedGoogle Scholar
  78. Suzuki M, Gomi F, Hara C et al (2014) Characteristics of central serous chorioretinopathy complicated by focal choroidal excavation. Retina 4(6):1216–1222 [Epub ahead of print]CrossRefGoogle Scholar
  79. Vasconcelos-Santos DV, Sohn EH, Sadda S et al (2010) Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings. Retina 30:33–41CrossRefPubMedPubMedCentralGoogle Scholar
  80. Von Graefe A (1866) Ueber central recidivierende retinitis. Graefes Arch Clin Exp Ophthalmol 12:211–215CrossRefGoogle Scholar
  81. Wang M, Sander B, la Cour M et al (2005) Clinical characteristics of subretinal deposits in central serous chorioretinopathy. Acta Ophthalmol Scand 83:691–696CrossRefPubMedGoogle Scholar
  82. Wojtkowski M, Srinivasan V, Fujimoto JG et al (2005) Three-dimensional retinal imaging with high speed ultrahigh resolution optical coherence tomography. Ophthalmology 112:1734–1746CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yalcinbayir O, Gelisken O, Akova-Budak B et al (2014) Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina 34:705–712CrossRefPubMedGoogle Scholar
  84. Yang L, Jonas JB, Wei W et al (2013) Optical coherence tomography assisted enhanced depth imaging of central serous chorioretinopathy. Invest Ophthalmol Vis Sci 54:4659–4665CrossRefPubMedGoogle Scholar
  85. Yannuzzi LA, Shakin JL, Fisher YL et al (1984) Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. Ophthalmology 91:1554–1572CrossRefPubMedGoogle Scholar
  86. Yannuzzi LA, Slakter JS, Gross NE et al (2012) Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. Retina 32(Suppl 1):288–298CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina

Personalised recommendations