Neovascular Age-Related Macular Degeneration

  • Reinhard Told
  • Sebastian M. Waldstein
  • Ursula Schmidt-Erfurth


Since OCT’s invention over 20 years ago (Fercher et al. 1993; Huang et al. 1991; Swanson et al. 1993), it has become important for visualizing static and, nowadays, dynamic retinal tissue properties. The invention of spectral domain OCT (SD-OCT) about 10 years later (de Boer et al. 2003; Wojtkowski et al. 2002) revolutionized ophthalmic imaging once more. Visualization of microstructural changes in the retina and surrounding tissues became possible with scan averaging (Sakamoto et al. 2008), active eye-tracking, raster scanning patterns, enhanced depth imaging (EDI) (Spaide et al. 2008), and 1050-nm light sources for deeper tissue penetration (Unterhuber et al. 2005). These techniques allowed ophthalmologists to assign specific anatomical compartments and retinal layers and accurately compare changes in the course of disease. Neovascular age-related macular degeneration (nAMD) is one of the diseases that has benefited most from advancements in OCT technology (Geitzenauer et al. 2011). Consequently, noninvasive SD-OCT imaging has become essential in nAMD diagnosis and follow-up in daily clinical routine.


Retinal Pigment Epithelium Fluorescein Angiography Polypoidal Choroidal Vasculopathy Subretinal Fluid Central Retinal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAO (2015) Age-related macular degeneration PPP – updated 2015. Accessed 21 Apr 2015
  2. Ahlers C, Golbaz I, Stock G, Fous A, Kolar S, Pruente C, Schmidt-Erfurth U (2008) Time course of morphologic effects on different retinal compartments after ranibizumab therapy in age-related macular degeneration. Ophthalmology 115:46. doi: 10.1016/j.ophtha.2008.05.017 CrossRefGoogle Scholar
  3. Ahlers C, Golbaz I, Einwallner E, Dunavölgyi R, Malamos P, Stock G, Pruente C, Schmidt-Erfurth U (2009) Identification of optical density ratios in subretinal fluid as a clinically relevant biomarker in exudative macular disease. Invest Ophthalmol Vis Sci 50:3417–3424. doi: 10.1167/iovs.08-2759 PubMedCrossRefGoogle Scholar
  4. Ahlers C, Götzinger E, Pircher M, Golbaz I, Prager F, Schütze C, Baumann B, Hitzenberger CK, Schmidt-Erfurth U (2010) Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 51:2149–2157. doi: 10.1167/iovs.09-3817 PubMedCrossRefGoogle Scholar
  5. Alasil T, Ferrara D, Adhi M, Brewer E, Kraus MF, Baumal CR, Hornegger J, Fujimoto JG, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol 159:634–64300. doi: 10.1016/j.ajo.2014.12.012 PubMedCrossRefGoogle Scholar
  6. Baek J, Park Y-HH (2015) Optical density ratio in the subretinal fluid: differentiating chronic central serous chorioretinopathy and polypodial choroidal vasculopathy. Am J Ophthalmol 159:386–392. doi: 10.1016/j.ajo.2014.11.011 PubMedCrossRefGoogle Scholar
  7. Baumann B, Gotzinger E, Pircher M, Sattmann H, Schuutze C, Schlanitz F, Ahlers C, Schmidt-Erfurth U, Hitzenberger CK (2010) Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt 15:61704. doi: 10.1117/1.3499420 CrossRefGoogle Scholar
  8. Baumann B, Potsaid B, Kraus MF, Liu JJ, Huang D, Hornegger J, Cable AE, Duker JS, Fujimoto JG (2011) Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed Opt Express 2:1539–1552. doi: 10.1364/BOE.2.001539 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bischoff PM, Flower RW (1985) Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? Doc Ophthalmol Adv Ophthalmol 60:235–291CrossRefGoogle Scholar
  10. Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H, Qiu P, Anger E, Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W (2006) Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 103:5066–5071. doi: 10.1073/pnas.0506997103 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blatter C, Coquoz S, Grajciar B, Singh AS, Bonesi M, Werkmeister RM, Schmetterer L, Leitgeb RA (2013) Dove prism based rotating dual beam bidirectional Doppler OCT. Biomed Opt Express 4:1188–1203. doi: 10.1364/BOE.4.001188 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bolz M, Simader C, Ritter M, Ahlers C, Benesch T, Prünte C, Schmidt-Erfurth U (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration. Br J Ophthalmol 94:185–189. doi: 10.1136/bjo.2008.143974 PubMedCrossRefGoogle Scholar
  13. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S, Group AS (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444. doi: 10.1056/NEJMoa062655 PubMedCrossRefGoogle Scholar
  14. Busbee BG, Ho AC, Brown DM, Heier JS, Suñer IJ, Li Z, Rubio RG, Lai P, Group HS (2013) Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 120:1046–1056. doi: 10.1016/j.ophtha.2012.10.014 PubMedCrossRefGoogle Scholar
  15. Castillo MM, Mowatt G, Elders A, Lois N, Fraser C, Hernández R, Amoaku W, Burr JM, Lotery A, Ramsay CR, Azuara-Blanco A (2015) Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review. Ophthalmology 122:399–406. doi: 10.1016/j.ophtha.2014.07.055 PubMedCrossRefGoogle Scholar
  16. Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Wordsworth S, Reeves BC, Investigators IS (2012) Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology 119:1399–1411. doi: 10.1016/j.ophtha.2012.04.015 PubMedCrossRefGoogle Scholar
  17. Chakravarthy U, Williams M, Group AMDG (2013) The Royal College of Ophthalmologists Guidelines on AMD: Executive Summary. Eye (London) 27:1429–1431. doi: 10.1038/eye.2013.233 CrossRefGoogle Scholar
  18. Channa R, Sophie R, Bagheri S, Shah SM, Wang J, Adeyemo O, Sodhi A, Wenick A, Ying HS, Campochiaro PA (2015) Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol 159(9–19):e11–e12. doi: 10.1016/j.ajo.2014.09.012 Google Scholar
  19. Chhablani J, Kim JS, Freeman WR, Kozak I, Wang H-YY, Cheng L (2013) Predictors of visual outcome in eyes with choroidal neovascularization secondary to age related macular degeneration treated with intravitreal bevacizumab monotherapy. Int J Ophthalmol 6:62–66. doi: 10.3980/j.issn.2222-3959.2013.01.13 PubMedPubMedCentralGoogle Scholar
  20. Clermont AC, Bursell S-EE (2007) Retinal blood flow in diabetes. Microcirculation (New York) 14:49–61. doi: 10.1080/10739680601072164 CrossRefGoogle Scholar
  21. Cohen SY, Mimoun G, Oubraham H, Zourdani A, Malbrel C, Queré S, Schneider V, Group LS (2013) Changes in visual acuity in patients with wet age-related macular degeneration treated with intravitreal ranibizumab in daily clinical practice: the LUMIERE study. Retina (Philadelphia) 33:474–481. doi: 10.1097/IAE.0b013e31827b6324 CrossRefGoogle Scholar
  22. Coscas F, Coscas G, Querques G, Massamba N, Querques L, Bandello F, Souied EH (2012) En face enhanced depth imaging optical coherence tomography of fibrovascular pigment epithelium detachment. Invest Ophthalmol Vis Sci 53:4147–4151. doi: 10.1167/iovs.12-9878 PubMedCrossRefGoogle Scholar
  23. Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92:66. doi: 10.1111/aos.12298 CrossRefGoogle Scholar
  24. Dai C, Liu X, Zhang HF, Puliafito CA, Jiao S (2013) Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography. Invest Ophthalmol Vis Sci 54:7998–8003. doi: 10.1167/iovs.13-12318 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, Huang J, Ying GS, Hagstrom SA, Winter K, Maguire MG, Comparison of Age-related Macular Degeneration Treatments Trials Research G (2014) Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:656–666. doi: 10.1016/j.ophtha.2013.10.019 PubMedCrossRefGoogle Scholar
  26. Dansingani KK, Naysan J, Freund KB (2015) En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation). Eye 29:703–706. doi: 10.1038/eye.2015.27 PubMedPubMedCentralCrossRefGoogle Scholar
  27. de Boer JF, Milner TE, van Gemert MJ, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936PubMedCrossRefGoogle Scholar
  28. de Boer JF, Milner TE, Nelson JS (1999) Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett 24:300–302PubMedCrossRefGoogle Scholar
  29. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069PubMedCrossRefGoogle Scholar
  30. de Carlo TE, Bonini Filho MA, Chin AT, Adhi M, Ferrara D, Baumal CR, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 122:1228–1238. doi: 10.1016/j.ophtha.2015.01.029 PubMedCrossRefGoogle Scholar
  31. Dirani A, Gianniou C, Marchionno L, Decugis D, Mantel I (2015) Incidence of outer retinal tubulation in ranibizumab-treated Age-related macular degeneration. Retina 35:1166–1172. doi: 10.1097/IAE.0000000000000439 PubMedCrossRefGoogle Scholar
  32. Doblhoff-Dier V, Schmetterer L, Vilser W, Garhöfer G, Gröschl M, Leitgeb RA, Werkmeister RM (2014) Measurement of the total retinal blood flow using dual beam fourier-domain doppler optical coherence tomography with orthogonal detection planes. Biomed Opt Express 5:630–642. doi: 10.1364/BOE.5.000630 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88. doi: 10.1016/j.preteyeres.2007.07.005 PubMedCrossRefGoogle Scholar
  34. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi: 10.1016/j.ophtha.2013.07.042 PubMedCrossRefGoogle Scholar
  35. Early-Treatment-Diabetic-Retinopathy-Study-Group (1985) Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol 103:1796–1806CrossRefGoogle Scholar
  36. Ehrlich R, Kheradiya NS, Winston DM, Moore DB, Wirostko B, Harris A (2009) Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol 247:583–591. doi: 10.1007/s00417-008-1018-x PubMedCrossRefGoogle Scholar
  37. Ellabban AA, Hangai M, Yamashiro K, Nakagawa S, Tsujikawa A, Yoshimura N (2012) Tomographic fundus features in pseudoxanthoma elasticum: comparison with neovascular age-related macular degeneration in Japanese patients. Eye (London) 26:1086–1094. doi: 10.1038/eye.2012.101 CrossRefGoogle Scholar
  38. Faria-Correia F, Barros-Pereira R, Queirós-Mendanha L, Fonseca S, Mendonça L, Falcão MS, Brandão E, Falcão-Reis F, Carneiro AM (2013) Characterization of neovascular age-related macular degeneration patients with outer retinal tubulations. Ophthalmol J Int d’ophtalmol Int J Ophthalmol Zeitschrift für Augenheilkunde 229:147–151. doi: 10.1159/000346854 CrossRefGoogle Scholar
  39. Felberer F, Kroisamer J-SS, Baumann B, Zotter S, Schmidt-Erfurth U, Hitzenberger CK, Pircher M (2014) Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express 5:439–456. doi: 10.1364/BOE.5.000439 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116:113–114PubMedCrossRefGoogle Scholar
  41. Flores-Moreno I, Arias-Barquet L, Rubio-Caso MJ, Ruiz-Moreno JM, Duker JS, Caminal JM (2015) En face swept-source optical coherence tomography in neovascular age-related macular degeneration. Br J Ophthalmol 99:1260–1267. doi: 10.1136/bjophthalmol-2014-306422 PubMedCrossRefGoogle Scholar
  42. Framme C, Panagakis G, Birngruber R (2010) Effects on choroidal neovascularization after anti-VEGF upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 51:1671–1676. doi: 10.1167/iovs.09-4496 PubMedCrossRefGoogle Scholar
  43. Freund KB, Yannuzzi LA, Sorenson JA (1993) Age-related macular degeneration and choroidal neovascularization. Am J Ophthalmol 115:786–791PubMedCrossRefGoogle Scholar
  44. Freund KB, Zweifel SA, Engelbert M (2010) Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina (Philadelphia) 30:1333–1349. doi: 10.1097/IAE.0b013e3181e7976b CrossRefGoogle Scholar
  45. Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, Puliafito CA, Davis JL, Flynn HW, Esquiabro M (2007) An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol 143:566–583. doi: 10.1016/j.ajo.2007.01.028 PubMedCrossRefGoogle Scholar
  46. Gass JD (1994) Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Trans Am Ophthalmol Soc 92:91PubMedPubMedCentralGoogle Scholar
  47. Geirsdottir A, Hardarson SH, Olafsdottir OB, Stefánsson E (2014) Retinal oxygen metabolism in exudative age-related macular degeneration. Acta Ophthalmol 92:27–33. doi: 10.1111/aos.12294 PubMedCrossRefGoogle Scholar
  48. Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177. doi: 10.1136/bjo.2010.182170 PubMedCrossRefGoogle Scholar
  49. Gelisken F, Inhoffen W, Schneider U, Stroman G, Kreissig I (1998) Indocyanine green angiography in classic choroidal neovascularization. Jpn J Ophthalmol 42:300–303PubMedCrossRefGoogle Scholar
  50. Gianniou C, Dirani A, Jang L, Mantel I (2015) Refractory intraretinal or subretinal fluid in neovascular age-related macular degeneration treated with intravitreal ranizubimab: Functional and Structural Outcome. Retina (Philadelphia) 35:1195–1201. doi: 10.1097/IAE.0000000000000465 CrossRefGoogle Scholar
  51. Gordon AY, Jayagopal A (2014) Engineering of nanoscale contrast agents for optical coherence tomography. J Nanomedicine Nanotechnol Suppl 5:4. doi: 10.4172/2157-7439.S5-004 Google Scholar
  52. Green-Simms AE, Bakri SJ (2011) Vitreomacular traction and age-related macular degeneration. Semin Ophthalmol 26:137–138. doi: 10.3109/08820538.2011.559512 PubMedCrossRefGoogle Scholar
  53. Gross NE, Aizman A, Brucker A, Klancnik JM, Yannuzzi LA (2005) Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina (Philadelphia) 25:713–718CrossRefGoogle Scholar
  54. Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137:496–503. doi: 10.1016/j.ajo.2003.09.042 PubMedCrossRefGoogle Scholar
  55. Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053PubMedCrossRefGoogle Scholar
  56. Hirami Y, Mandai M, Takahashi M, Teramukai S, Tada H, Yoshimura N (2009) Association of clinical characteristics with disease subtypes, initial visual acuity, and visual prognosis in neovascular age-related macular degeneration. Jpn J Ophthalmol 53:396–407. doi: 10.1007/s10384-009-0669-4 PubMedCrossRefGoogle Scholar
  57. Holz FG, Amoaku W, Donate J, Guymer RH, Kellner U, Schlingemann RO, Weichselberger A, Staurenghi G, Group SS (2011) Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology 118:663–671. doi: 10.1016/j.ophtha.2010.12.019 PubMedCrossRefGoogle Scholar
  58. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedPubMedCentralCrossRefGoogle Scholar
  59. Iaculli C, Barone A, Scudieri M, Giovanna Palumbo M, Delle Noci N (2015) OUTER RETINAL TUBULATION: characteristics in patients with neovascular age-related macular degeneration. Retina 35:1979–1984. doi: 10.1097/IAE.0000000000000609 PubMedCrossRefGoogle Scholar
  60. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA (2010) Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol 55:501–515. doi: 10.1016/j.survophthal.2010.03.004 PubMedCrossRefGoogle Scholar
  61. Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG (2013) Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology 120:1860–1870PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jang L, Gianniou C, Ambresin A, Mantel I (2014) Refractory subretinal fluid in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab: visual acuity outcome. Graefes Arch Clin Exp Ophthalmol 253:1211–1216. doi: 10.1007/s00417-014-2789-x PubMedCrossRefGoogle Scholar
  63. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3:3127–3137. doi: 10.1364/BOE.3.003127 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402. doi: 10.1073/pnas.1500185112 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jung JJ, Chen CY, Mrejen S, Gallego-Pinazo R, Xu L, Marsiglia M, Boddu S, Freund KB (2014) The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am J Ophthalmol 158:769–77900. doi: 10.1016/j.ajo.2014.07.006 PubMedCrossRefGoogle Scholar
  66. Kakehashi A, Schepens CL, Trempe CL (1994) Vitreomacular observations. I Vitreomacular adhesion and hole in the premacular hyaloid. Ophthalmology 101:1515–1521PubMedCrossRefGoogle Scholar
  67. Keane PA, Patel PJ, Liakopoulos S, Heussen FM, Sadda SR, Tufail A (2012) Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol 57:389–414. doi: 10.1016/j.survophthal.2012.01.006 PubMedCrossRefGoogle Scholar
  68. Khan S, Engelbert M, Imamura Y, Freund KB (2012) Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings. Retina (Philadelphia) 32:1057–1068. doi: 10.1097/IAE.0b013e31823beb14 CrossRefGoogle Scholar
  69. Kiss CG, Geitzenauer W, Simader C, Gregori G, Schmidt-Erfurth U (2009) Evaluation of ranibizumab-induced changes in high-resolution optical coherence tomographic retinal morphology and their impact on visual function. Invest Ophthalmol Vis Sci 50:2376–2383. doi: 10.1167/iovs.08-2017 PubMedCrossRefGoogle Scholar
  70. Krebs I, Glittenberg C, Zeiler F, Binder S (2011) Spectral domain optical coherence tomography for higher precision in the evaluation of vitreoretinal adhesions in exudative age-related macular degeneration. Br J Ophthalmol 95:1415–1418. doi: 10.1136/bjo.2010.192385 PubMedCrossRefGoogle Scholar
  71. Landa G, Gentile RC, Garcia PM, Muldoon TO, Rosen RB (2012) External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (London) 26:61–69. doi: 10.1038/eye.2011.237 CrossRefGoogle Scholar
  72. Lanzl IM, Seidova S-FF, Maier M, Lohmann C, Schmidt-Trucksäss A, Halle M, Kotliar KE (2011) Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection. Acta Ophthalmol 89:472–479. doi: 10.1111/j.1755-3768.2009.01718.x PubMedCrossRefGoogle Scholar
  73. Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ, Suslick KS, Boppart SA (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1546–1548PubMedCrossRefGoogle Scholar
  74. Lee JY, Folgar FA, Maguire MG, Ying G-sS, Toth CA, Martin DF, Jaffe GJ, Group CR (2014) Outer retinal tubulation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology 121:2423–2431. doi: 10.1016/j.ophtha.2014.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Leitgeb RA (2007) Optical coherence tomography-high resolution imaging of structure and function. Eng Med Biol Soc 2007:530–532. doi: 10.1109/IEMBS.2007.4352344 Google Scholar
  76. Liakopoulos S, Ongchin S, Bansal A, Msutta S, Walsh AC, Updike PG, Sadda SR (2008) Quantitative optical coherence tomography findings in various subtypes of neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 49:5048–5054. doi: 10.1167/iovs.08-1877 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu X, Kang JU (2010) Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography. IEEE Trans Biomed Eng 57:2572–2575. doi: 10.1109/TBME.2010.2058109 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu W, Zhang HF (2014) Noninvasive in vivo imaging of oxygen metabolic rate in the retina. Conf Proc Annu Int Conference IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2014:3865–3868. doi: 10.1109/EMBC.2014.6944467 Google Scholar
  79. Liu Y, Wen F, Huang S, Luo G, Yan H, Sun Z, Wu D (2007) Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol 245:1441–1445. doi: 10.1007/s00417-007-0575-8 PubMedCrossRefGoogle Scholar
  80. López-Sáez MP, Ordoqui E, Tornero P, Baeza A, Sainza T, Zubeldia JM, Baeza ML (1998) Fluorescein-induced allergic reaction. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol 81(5 Pt 1):428–430. doi: 10.1016/S1081-1206(10)63140-7 CrossRefGoogle Scholar
  81. Lu CW, Lee CK, Tsai MT, Wang YM, Yang CC (2008) Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Opt Lett 33:416–418PubMedCrossRefGoogle Scholar
  82. Macular-Photocoagulation-Study-Group (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol 109:1242–1257CrossRefGoogle Scholar
  83. Major JC, Wykoff CC, Mariani AF, Chen E, Croft DE, Brown DM (2014) Comparison of spectral-domain and time-domain optical coherence tomography in the detection of neovascular age-related macular degeneration activity. Retina (Philadelphia) 34:48–54. doi: 10.1097/IAE.0b013e3182965743 CrossRefGoogle Scholar
  84. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840PubMedCrossRefGoogle Scholar
  85. Malamos P, Sacu S, Georgopoulos M, Kiss C, Pruente C, Schmidt-Erfurth U (2009) Correlation of high-definition optical coherence tomography and fluorescein angiography imaging in neovascular macular degeneration. Invest Ophthalmol Vis Sci 50:4926–4933. doi: 10.1167/iovs.09-3610 PubMedCrossRefGoogle Scholar
  86. Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ, Group CR (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908. doi: 10.1056/NEJMoa1102673 PubMedCrossRefGoogle Scholar
  87. Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL 3rd, Comparison of Age-Related Macular Degeneration Treatments Trials Research G (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119:1388–1398. doi: 10.1016/j.ophtha.2012.03.053 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Maruko I, Iida T, Saito M, Nagayama D, Saito K (2007) Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 144:15–22. doi: 10.1016/j.ajo.2007.03.047 PubMedCrossRefGoogle Scholar
  89. Mathew R, Pefkianaki M, Kopsachilis N, Brar M, Richardson M, Sivaprasad S (2014) Correlation of fundus fluorescein angiography and spectral-domain optical coherence tomography in identification of membrane subtypes in neovascular age-related macular degeneration. Ophthalmol J Int d’ophtalmol Int J Ophthalmol Zeitschrift für Augenheilkunde 231:153–159. doi: 10.1159/000355091 CrossRefGoogle Scholar
  90. Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, Papp A, Simader C, Schmidt-Erfurth U (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120:2620–2629. doi: 10.1016/j.ophtha.2013.05.032 PubMedCrossRefGoogle Scholar
  91. Mojana F, Cheng L, Bartsch DU, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146(2):218–227. doi: 10.1016/j.ajo.2008.04.027 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Moult E, Choi W, Waheed NK, Adhi M, Lee B, Lu CD, Jayaraman V, Potsaid B, Rosenfeld PJ, Duker JS, Fujimoto JG (2014) Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 45:496–505. doi: 10.3928/23258160-20141118-03 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mukai R, Sato T, Kishi S (2014) A hyporeflective space between hyperreflective materials in pigment epithelial detachment and Bruch’s membrane in neovascular age-related macular degeneration. BMC Ophthalmol 14:159. doi: 10.1186/1471-2415-14-159 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Nagiel A, Freund KB, Spaide RF, Munch IC, Larsen M, Sarraf D (2013) Mechanism of retinal pigment epithelium tear formation following intravitreal anti-vascular endothelial growth factor therapy revealed by spectral-domain optical coherence tomography. Am J Ophthalmol 156:981–98800. doi: 10.1016/j.ajo.2013.06.024 PubMedCrossRefGoogle Scholar
  95. Neudorfer M, Weinberg A, Loewenstein A, Barak A (2012) Differential optical density of subretinal spaces. Invest Ophthalmol Vis Sci 53:3104–3110. doi: 10.1167/iovs.11-8700 PubMedCrossRefGoogle Scholar
  96. Pemp B, Schmetterer L (2008) Ocular blood flow in diabetes and age-related macular degeneration. Can J Ophthalmol J Can d’ophtalmol 43:295–301. doi: 10.3129/i08-049 CrossRefGoogle Scholar
  97. Querques G, Souied EH, Freund KB (2013) Multimodal imaging of early stage 1 type 3 neovascularization with simultaneous eye-tracked spectral-domain optical coherence tomography and high-speed real-time angiography. Retina (Philadelphia) 33:1881–1887. doi: 10.1097/IAE.0b013e3182923448 CrossRefGoogle Scholar
  98. Ritter M, Simader C, Bolz M, Deák GG, Mayr-Sponer U, Sayegh R, Kundi M, Schmidt-Erfurth UM (2014) Intraretinal cysts are the most relevant prognostic biomarker in neovascular age-related macular degeneration independent of the therapeutic strategy. Br J Ophthalmol 98:1629–1635. doi: 10.1136/bjophthalmol-2014-305186 PubMedCrossRefGoogle Scholar
  99. Roberts P, Mittermueller TJ, Montuoro A, Sulzbacher F, Munk M, Sacu S, Schmidt-Erfurth U (2014) A quantitative approach to identify morphological features relevant for visual function in ranibizumab therapy of neovascular AMD. Invest Ophthalmol Vis Sci 55:6623–6630. doi: 10.1167/iovs.14-14293 PubMedCrossRefGoogle Scholar
  100. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431. doi: 10.1056/NEJMoa054481 PubMedCrossRefGoogle Scholar
  101. Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR, Folwell MA, Williams DR, Dubra A, Chung MM (2013) In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 4:2527–2539. doi: 10.1364/BOE.4.002527 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rouvas AA, Papakostas TD, Ntouraki A, Douvali M, Vergados I, Ladas ID (2010) Angiographic and OCT features of retinal angiomatous proliferation. Eye (Lond) 24:1633. doi: 10.1038/eye.2010.134 CrossRefGoogle Scholar
  103. Saito M, Iida T, Nagayama D (2008) Cross-sectional and en face optical coherence tomographic features of polypoidal choroidal vasculopathy. Retina (Philadelphia) 28:459–464. doi: 10.1097/IAE.0b013e318156db60 CrossRefGoogle Scholar
  104. Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115:1071. doi: 10.1016/j.ophtha.2007.09.001 PubMedCrossRefGoogle Scholar
  105. Sayanagi K, Sharma S, Kaiser PK (2009) Photoreceptor status after antivascular endothelial growth factor therapy in exudative age-related macular degeneration. Br J Ophthalmol 93:622–626. doi: 10.1136/bjo.2008.151977 PubMedCrossRefGoogle Scholar
  106. Sayanagi K, Gomi F, Ikuno Y, Akiba M, Nishida K (2014) Comparison of spectral-domain and high-penetration OCT for observing morphologic changes in age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 252:3–9. doi: 10.1007/s00417-013-2474-5 PubMedCrossRefGoogle Scholar
  107. Sayanagi K, Gomi F, Akiba M, Sawa M, Hara C, Nishida K (2015) En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol 99:29–35. doi: 10.1136/bjophthalmol-2013-304658 PubMedCrossRefGoogle Scholar
  108. Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA (2015) OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION: optical coherence tomographic findings correspond to histology. Retina 35:1339–1350. doi: 10.1097/IAE.0000000000000471 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Schlanitz FG, Baumann B, Spalek T, Schütze C, Ahlers C, Pircher M, Götzinger E, Hitzenberger CK, Schmidt-Erfurth U (2011) Performance of automated drusen detection by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 52:4571–4579. doi: 10.1167/iovs.10-6846 PubMedCrossRefGoogle Scholar
  110. Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155. doi: 10.1016/j.exer.2010.09.002 PubMedCrossRefGoogle Scholar
  111. Schmidt-Erfurth U, Eldem B, Guymer R, Korobelnik J-FF, Schlingemann RO, Axer-Siegel R, Wiedemann P, Simader C, Gekkieva M, Weichselberger A, Group ES (2011) Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology 118:831–839. doi: 10.1016/j.ophtha.2010.09.004 PubMedCrossRefGoogle Scholar
  112. Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Monés J, Richard G, Bandello F, European Society of Retina S (2014a) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98:1144–1167. doi: 10.1136/bjophthalmol-2014-305702 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schmidt-Erfurth U, Kaiser PK, Korobelnik J-FF, Brown DM, Chong V, Nguyen QD, Ho AC, Ogura Y, Simader C, Jaffe GJ, Slakter JS, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Sowade O, Zeitz O, Norenberg C, Sandbrink R, Heier JS (2014b) Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology 121:193–201. doi: 10.1016/j.ophtha.2013.08.011 PubMedCrossRefGoogle Scholar
  114. Schmidt-Erfurth U, Waldstein SM, Deak G-GG, Kundi M, Simader C (2015) Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology 122:822–832. doi: 10.1016/j.ophtha.2014.11.017 PubMedCrossRefGoogle Scholar
  115. Schulze S, Hoerle S, Mennel S, Kroll P (2008) Vitreomacular traction and exudative age-related macular degeneration. Acta Ophthalmol 86:470–481. doi: 10.1111/j.1755-3768.2008.01210.x PubMedCrossRefGoogle Scholar
  116. Schütze C, Wedl M, Baumann B, Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2015) Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Am J Ophthalmol 159:1100–1114.e1. doi: 10.1016/j.ajo.2015.02.020 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schwartz DM, Fingler J, Kim DY, Zawadzki RJ, Morse LS, Park SS, Fraser SE, Werner JS (2014) Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 121:180–187. doi: 10.1016/j.ophtha.2013.09.002 PubMedCrossRefGoogle Scholar
  118. Simader C, Ritter M, Bolz M, Deák GG, Mayr-Sponer U, Golbaz I, Kundi M, Schmidt-Erfurth UM (2014) Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related macular degeneration. Ophthalmology 121:1237–1245. doi: 10.1016/j.ophtha.2013.12.029 PubMedCrossRefGoogle Scholar
  119. Slakter JS, Yannuzzi LA, Schneider U, Sorenson JA, Ciardella A, Guyer DR, Spaide RF, Freund KB, Orlock DA (2000) Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration. Ophthalmology 107:742. doi: 10.1016/S0161-6420(00)00009-9 PubMedCrossRefGoogle Scholar
  120. Song W, Wei Q, Jiao S, Zhang HF (2013) Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography. J Vis Exp JoVE 71:e4390. doi: 10.3791/4390 Google Scholar
  121. Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol 147:644–652. doi: 10.1016/j.ajo.2008.10.005 PubMedCrossRefGoogle Scholar
  122. Spaide RF (2015) Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol 160:6–16. doi: 10.1016/j.ajo.2015.04.012 PubMedCrossRefGoogle Scholar
  123. Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500. doi: 10.1016/j.ajo.2008.05.032 PubMedCrossRefGoogle Scholar
  124. Sulzbacher F, Kiss C, Munk M, Deak G, Sacu S, Schmidt-Erfurth U (2011) Diagnostic evaluation of type 2 (classic) choroidal neovascularization: optical coherence tomography, indocyanine green angiography, and fluorescein angiography. Am J Ophthalmol 152:799–8060. doi: 10.1016/j.ajo.2011.04.011 PubMedCrossRefGoogle Scholar
  125. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864–1866PubMedCrossRefGoogle Scholar
  126. Tulvatana W, Adamian M, Berson EL, Dryja TP (1999) Photoreceptor rosettes in autosomal dominant retinitis pigmentosa with reduced penetrance. Arch Ophthalmol 117:399–402PubMedCrossRefGoogle Scholar
  127. Ueda-Arakawa N, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Yoshimura N (2012) Visual prognosis of eyes with submacular hemorrhage associated with exudative age-related macular degeneration. Jpn J Ophthalmol 56:589–598. doi: 10.1007/s10384-012-0191-y PubMedCrossRefGoogle Scholar
  128. Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Optics express 13(9):3252–3258Google Scholar
  129. Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, Kusaka S, Tano Y (2009) Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology 116:519–528. doi: 10.1016/j.ophtha.2008.10.001 PubMedCrossRefGoogle Scholar
  130. Waldstein SM, Sponer U, Simader C, Sacu S, Schmidt-Erfurth U (2012) Influence of vitreomacular adhesion on the development of exudative age-related macular degeneration: 4-year results of a longitudinal study. Retina (Philadelphia, Pa) 32:424–433. doi: 10.1097/IAE.0b013e3182278b80 CrossRefGoogle Scholar
  131. Waldstein SM, Ritter M, Simader C, Mayr-Sponer U, Kundi M, Schmidt-Erfurth U (2014) Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration. Am J Ophthalmol 158:328–3360. doi: 10.1016/j.ajo.2014.04.028 PubMedCrossRefGoogle Scholar
  132. Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical Doppler tomography. Opt Lett 20:1337–1339PubMedCrossRefGoogle Scholar
  133. Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2007) In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 12:41215. doi: 10.1117/1.2772871 CrossRefGoogle Scholar
  134. Wang Y, Fawzi AA, Tan O, Zhang X, Huang D (2011a) Flicker-induced changes in retinal blood flow assessed by Doppler optical coherence tomography. Biomed Opt Express 2:1852–1860. doi: 10.1364/BOE.001852 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang Y, Fawzi AA, Varma R, Sadun AA, Zhang X (2011b) Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 52:840–845. doi: 10.1167/iovs.10-5985 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Werkmeister RM, Dragostinoff N, Pircher M, Götzinger E, Hitzenberger CK, Leitgeb RA, Schmetterer L (2008) Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt Lett 33:2967–2969PubMedCrossRefGoogle Scholar
  137. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463. doi: 10.1117/1.1482379 PubMedCrossRefGoogle Scholar
  138. Wolff B, Matet A, Vasseur V, Sahel J-AA, Mauget-Faÿsse M (2012) En face OCT imaging for the diagnosis of outer retinal tubulations in age-related macular degeneration. J Ophthalmol 2012:542417. doi: 10.1155/2012/542417 PubMedPubMedCentralGoogle Scholar
  139. Wolf-Schnurrbusch UE, Ghanem R, Rothenbuehler SP, Enzmann V, Framme C, Wolf S (2011) Predictors of short-term visual outcome after anti-VEGF therapy of macular edema due to central retinal vein occlusion. Invest Ophthalmol Vis Sci 52:3334–3337. doi: 10.1167/iovs.10-6097 PubMedCrossRefGoogle Scholar
  140. Xia J, Yao J, Wang LV (2014) Photoacoustic tomography: principles and advances. Electromagn waves (Cambridge, Mass) 147:1–22CrossRefGoogle Scholar
  141. Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina (Philadelphia, Pa) 21:416–434CrossRefGoogle Scholar
  142. Yannuzzi LA, Freund KB, Takahashi BS (2008) Review of retinal angiomatous proliferation or type 3 neovascularization. Retina (Philadelphia, Pa) 28:375–384. doi: 10.1097/IAE.0b013e3181619c55 CrossRefGoogle Scholar
  143. Ying GS, Kim BJ, Maguire MG, Huang J, Daniel E, Jaffe GJ, Grunwald JE, Blinder KJ, Flaxel CJ, Rahhal F, Regillo C, Martin DF, Group CR (2014) Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. JAMA Ophthalmol 132:915–921. doi: 10.1001/jamaophthalmol.2014.1019 PubMedPubMedCentralCrossRefGoogle Scholar
  144. You JY, Chung H, Kim HC (2012) Evaluation of changes in choroidal neovascularization secondary to age-related macular degeneration after anti-VEGF therapy using spectral domain optical coherence tomography. Curr Eye Res 37:438–445. doi: 10.3109/02713683.2011.647227 PubMedCrossRefGoogle Scholar
  145. Zacks DN, Johnson MW (2004) Retinal angiomatous proliferation: optical coherence tomographic confirmation of an intraretinal lesion. Arch Ophthalmol (Chicago, Ill : 1960) 122:932–933. doi: 10.1001/archopht.122.6.932 CrossRefGoogle Scholar
  146. Zayit-Soudry S, Moroz I, Loewenstein A (2007) Retinal pigment epithelial detachment. Surv Ophthalmol 52:227–243. doi: 10.1016/j.survophthal.2007.02.008 PubMedCrossRefGoogle Scholar
  147. Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB (2009) Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol 127:1596–1602. doi: 10.1001/archophthalmol.2009.326 PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Reinhard Told
    • 1
  • Sebastian M. Waldstein
    • 2
  • Ursula Schmidt-Erfurth
    • 2
  1. 1.Department of OphthalmologyMedical University of ViennaViennaAustria
  2. 2.Department of Ophthalmology and OptometryMedical University of ViennaViennaAustria

Personalised recommendations