Skip to main content

Neovascular Age-Related Macular Degeneration

  • Chapter
  • First Online:
Spectral Domain Optical Coherence Tomography in Macular Diseases

Abstract

Since OCT’s invention over 20 years ago (Fercher et al. 1993; Huang et al. 1991; Swanson et al. 1993), it has become important for visualizing static and, nowadays, dynamic retinal tissue properties. The invention of spectral domain OCT (SD-OCT) about 10 years later (de Boer et al. 2003; Wojtkowski et al. 2002) revolutionized ophthalmic imaging once more. Visualization of microstructural changes in the retina and surrounding tissues became possible with scan averaging (Sakamoto et al. 2008), active eye-tracking, raster scanning patterns, enhanced depth imaging (EDI) (Spaide et al. 2008), and 1050-nm light sources for deeper tissue penetration (Unterhuber et al. 2005). These techniques allowed ophthalmologists to assign specific anatomical compartments and retinal layers and accurately compare changes in the course of disease. Neovascular age-related macular degeneration (nAMD) is one of the diseases that has benefited most from advancements in OCT technology (Geitzenauer et al. 2011). Consequently, noninvasive SD-OCT imaging has become essential in nAMD diagnosis and follow-up in daily clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAO (2015) Age-related macular degeneration PPP – updated 2015. http://www.aao.org/ppp. Accessed 21 Apr 2015

  • Ahlers C, Golbaz I, Stock G, Fous A, Kolar S, Pruente C, Schmidt-Erfurth U (2008) Time course of morphologic effects on different retinal compartments after ranibizumab therapy in age-related macular degeneration. Ophthalmology 115:46. doi:10.1016/j.ophtha.2008.05.017

    Article  Google Scholar 

  • Ahlers C, Golbaz I, Einwallner E, Dunavölgyi R, Malamos P, Stock G, Pruente C, Schmidt-Erfurth U (2009) Identification of optical density ratios in subretinal fluid as a clinically relevant biomarker in exudative macular disease. Invest Ophthalmol Vis Sci 50:3417–3424. doi:10.1167/iovs.08-2759

    Article  PubMed  Google Scholar 

  • Ahlers C, Götzinger E, Pircher M, Golbaz I, Prager F, Schütze C, Baumann B, Hitzenberger CK, Schmidt-Erfurth U (2010) Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 51:2149–2157. doi:10.1167/iovs.09-3817

    Article  PubMed  Google Scholar 

  • Alasil T, Ferrara D, Adhi M, Brewer E, Kraus MF, Baumal CR, Hornegger J, Fujimoto JG, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol 159:634–64300. doi:10.1016/j.ajo.2014.12.012

    Article  PubMed  Google Scholar 

  • Baek J, Park Y-HH (2015) Optical density ratio in the subretinal fluid: differentiating chronic central serous chorioretinopathy and polypodial choroidal vasculopathy. Am J Ophthalmol 159:386–392. doi:10.1016/j.ajo.2014.11.011

    Article  PubMed  Google Scholar 

  • Baumann B, Gotzinger E, Pircher M, Sattmann H, Schuutze C, Schlanitz F, Ahlers C, Schmidt-Erfurth U, Hitzenberger CK (2010) Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt 15:61704. doi:10.1117/1.3499420

    Article  Google Scholar 

  • Baumann B, Potsaid B, Kraus MF, Liu JJ, Huang D, Hornegger J, Cable AE, Duker JS, Fujimoto JG (2011) Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed Opt Express 2:1539–1552. doi:10.1364/BOE.2.001539

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischoff PM, Flower RW (1985) Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? Doc Ophthalmol Adv Ophthalmol 60:235–291

    Article  CAS  Google Scholar 

  • Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H, Qiu P, Anger E, Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W (2006) Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 103:5066–5071. doi:10.1073/pnas.0506997103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatter C, Coquoz S, Grajciar B, Singh AS, Bonesi M, Werkmeister RM, Schmetterer L, Leitgeb RA (2013) Dove prism based rotating dual beam bidirectional Doppler OCT. Biomed Opt Express 4:1188–1203. doi:10.1364/BOE.4.001188

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolz M, Simader C, Ritter M, Ahlers C, Benesch T, Prünte C, Schmidt-Erfurth U (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration. Br J Ophthalmol 94:185–189. doi:10.1136/bjo.2008.143974

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S, Group AS (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444. doi:10.1056/NEJMoa062655

    Article  CAS  PubMed  Google Scholar 

  • Busbee BG, Ho AC, Brown DM, Heier JS, Suñer IJ, Li Z, Rubio RG, Lai P, Group HS (2013) Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 120:1046–1056. doi:10.1016/j.ophtha.2012.10.014

    Article  PubMed  Google Scholar 

  • Castillo MM, Mowatt G, Elders A, Lois N, Fraser C, Hernández R, Amoaku W, Burr JM, Lotery A, Ramsay CR, Azuara-Blanco A (2015) Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review. Ophthalmology 122:399–406. doi:10.1016/j.ophtha.2014.07.055

    Article  PubMed  Google Scholar 

  • Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Wordsworth S, Reeves BC, Investigators IS (2012) Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology 119:1399–1411. doi:10.1016/j.ophtha.2012.04.015

    Article  PubMed  Google Scholar 

  • Chakravarthy U, Williams M, Group AMDG (2013) The Royal College of Ophthalmologists Guidelines on AMD: Executive Summary. Eye (London) 27:1429–1431. doi:10.1038/eye.2013.233

    Article  Google Scholar 

  • Channa R, Sophie R, Bagheri S, Shah SM, Wang J, Adeyemo O, Sodhi A, Wenick A, Ying HS, Campochiaro PA (2015) Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol 159(9–19):e11–e12. doi:10.1016/j.ajo.2014.09.012

    Google Scholar 

  • Chhablani J, Kim JS, Freeman WR, Kozak I, Wang H-YY, Cheng L (2013) Predictors of visual outcome in eyes with choroidal neovascularization secondary to age related macular degeneration treated with intravitreal bevacizumab monotherapy. Int J Ophthalmol 6:62–66. doi:10.3980/j.issn.2222-3959.2013.01.13

    PubMed  PubMed Central  Google Scholar 

  • Clermont AC, Bursell S-EE (2007) Retinal blood flow in diabetes. Microcirculation (New York) 14:49–61. doi:10.1080/10739680601072164

    Article  CAS  Google Scholar 

  • Cohen SY, Mimoun G, Oubraham H, Zourdani A, Malbrel C, Queré S, Schneider V, Group LS (2013) Changes in visual acuity in patients with wet age-related macular degeneration treated with intravitreal ranibizumab in daily clinical practice: the LUMIERE study. Retina (Philadelphia) 33:474–481. doi:10.1097/IAE.0b013e31827b6324

    Article  CAS  Google Scholar 

  • Coscas F, Coscas G, Querques G, Massamba N, Querques L, Bandello F, Souied EH (2012) En face enhanced depth imaging optical coherence tomography of fibrovascular pigment epithelium detachment. Invest Ophthalmol Vis Sci 53:4147–4151. doi:10.1167/iovs.12-9878

    Article  PubMed  Google Scholar 

  • Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92:66. doi:10.1111/aos.12298

    Article  Google Scholar 

  • Dai C, Liu X, Zhang HF, Puliafito CA, Jiao S (2013) Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography. Invest Ophthalmol Vis Sci 54:7998–8003. doi:10.1167/iovs.13-12318

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, Huang J, Ying GS, Hagstrom SA, Winter K, Maguire MG, Comparison of Age-related Macular Degeneration Treatments Trials Research G (2014) Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:656–666. doi:10.1016/j.ophtha.2013.10.019

    Article  PubMed  Google Scholar 

  • Dansingani KK, Naysan J, Freund KB (2015) En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation). Eye 29:703–706. doi:10.1038/eye.2015.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer JF, Milner TE, van Gemert MJ, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936

    Article  PubMed  Google Scholar 

  • de Boer JF, Milner TE, Nelson JS (1999) Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett 24:300–302

    Article  PubMed  Google Scholar 

  • de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  • de Carlo TE, Bonini Filho MA, Chin AT, Adhi M, Ferrara D, Baumal CR, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 122:1228–1238. doi:10.1016/j.ophtha.2015.01.029

    Article  PubMed  Google Scholar 

  • Dirani A, Gianniou C, Marchionno L, Decugis D, Mantel I (2015) Incidence of outer retinal tubulation in ranibizumab-treated Age-related macular degeneration. Retina 35:1166–1172. doi:10.1097/IAE.0000000000000439

    Article  CAS  PubMed  Google Scholar 

  • Doblhoff-Dier V, Schmetterer L, Vilser W, Garhöfer G, Gröschl M, Leitgeb RA, Werkmeister RM (2014) Measurement of the total retinal blood flow using dual beam fourier-domain doppler optical coherence tomography with orthogonal detection planes. Biomed Opt Express 5:630–642. doi:10.1364/BOE.5.000630

    Article  PubMed  PubMed Central  Google Scholar 

  • Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88. doi:10.1016/j.preteyeres.2007.07.005

    Article  PubMed  Google Scholar 

  • Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi:10.1016/j.ophtha.2013.07.042

    Article  PubMed  Google Scholar 

  • Early-Treatment-Diabetic-Retinopathy-Study-Group (1985) Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol 103:1796–1806

    Article  Google Scholar 

  • Ehrlich R, Kheradiya NS, Winston DM, Moore DB, Wirostko B, Harris A (2009) Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol 247:583–591. doi:10.1007/s00417-008-1018-x

    Article  PubMed  Google Scholar 

  • Ellabban AA, Hangai M, Yamashiro K, Nakagawa S, Tsujikawa A, Yoshimura N (2012) Tomographic fundus features in pseudoxanthoma elasticum: comparison with neovascular age-related macular degeneration in Japanese patients. Eye (London) 26:1086–1094. doi:10.1038/eye.2012.101

    Article  CAS  Google Scholar 

  • Faria-Correia F, Barros-Pereira R, Queirós-Mendanha L, Fonseca S, Mendonça L, Falcão MS, Brandão E, Falcão-Reis F, Carneiro AM (2013) Characterization of neovascular age-related macular degeneration patients with outer retinal tubulations. Ophthalmol J Int d’ophtalmol Int J Ophthalmol Zeitschrift für Augenheilkunde 229:147–151. doi:10.1159/000346854

    Article  CAS  Google Scholar 

  • Felberer F, Kroisamer J-SS, Baumann B, Zotter S, Schmidt-Erfurth U, Hitzenberger CK, Pircher M (2014) Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express 5:439–456. doi:10.1364/BOE.5.000439

    Article  PubMed  PubMed Central  Google Scholar 

  • Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116:113–114

    Article  CAS  PubMed  Google Scholar 

  • Flores-Moreno I, Arias-Barquet L, Rubio-Caso MJ, Ruiz-Moreno JM, Duker JS, Caminal JM (2015) En face swept-source optical coherence tomography in neovascular age-related macular degeneration. Br J Ophthalmol 99:1260–1267. doi:10.1136/bjophthalmol-2014-306422

    Article  PubMed  Google Scholar 

  • Framme C, Panagakis G, Birngruber R (2010) Effects on choroidal neovascularization after anti-VEGF upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 51:1671–1676. doi:10.1167/iovs.09-4496

    Article  PubMed  Google Scholar 

  • Freund KB, Yannuzzi LA, Sorenson JA (1993) Age-related macular degeneration and choroidal neovascularization. Am J Ophthalmol 115:786–791

    Article  CAS  PubMed  Google Scholar 

  • Freund KB, Zweifel SA, Engelbert M (2010) Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina (Philadelphia) 30:1333–1349. doi:10.1097/IAE.0b013e3181e7976b

    Article  Google Scholar 

  • Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, Puliafito CA, Davis JL, Flynn HW, Esquiabro M (2007) An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol 143:566–583. doi:10.1016/j.ajo.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  • Gass JD (1994) Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Trans Am Ophthalmol Soc 92:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geirsdottir A, Hardarson SH, Olafsdottir OB, Stefánsson E (2014) Retinal oxygen metabolism in exudative age-related macular degeneration. Acta Ophthalmol 92:27–33. doi:10.1111/aos.12294

    Article  CAS  PubMed  Google Scholar 

  • Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177. doi:10.1136/bjo.2010.182170

    Article  PubMed  Google Scholar 

  • Gelisken F, Inhoffen W, Schneider U, Stroman G, Kreissig I (1998) Indocyanine green angiography in classic choroidal neovascularization. Jpn J Ophthalmol 42:300–303

    Article  CAS  PubMed  Google Scholar 

  • Gianniou C, Dirani A, Jang L, Mantel I (2015) Refractory intraretinal or subretinal fluid in neovascular age-related macular degeneration treated with intravitreal ranizubimab: Functional and Structural Outcome. Retina (Philadelphia) 35:1195–1201. doi:10.1097/IAE.0000000000000465

    Article  CAS  Google Scholar 

  • Gordon AY, Jayagopal A (2014) Engineering of nanoscale contrast agents for optical coherence tomography. J Nanomedicine Nanotechnol Suppl 5:4. doi:10.4172/2157-7439.S5-004

    Google Scholar 

  • Green-Simms AE, Bakri SJ (2011) Vitreomacular traction and age-related macular degeneration. Semin Ophthalmol 26:137–138. doi:10.3109/08820538.2011.559512

    Article  PubMed  Google Scholar 

  • Gross NE, Aizman A, Brucker A, Klancnik JM, Yannuzzi LA (2005) Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina (Philadelphia) 25:713–718

    Article  Google Scholar 

  • Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137:496–503. doi:10.1016/j.ajo.2003.09.042

    Article  PubMed  Google Scholar 

  • Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053

    Article  CAS  PubMed  Google Scholar 

  • Hirami Y, Mandai M, Takahashi M, Teramukai S, Tada H, Yoshimura N (2009) Association of clinical characteristics with disease subtypes, initial visual acuity, and visual prognosis in neovascular age-related macular degeneration. Jpn J Ophthalmol 53:396–407. doi:10.1007/s10384-009-0669-4

    Article  PubMed  Google Scholar 

  • Holz FG, Amoaku W, Donate J, Guymer RH, Kellner U, Schlingemann RO, Weichselberger A, Staurenghi G, Group SS (2011) Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology 118:663–671. doi:10.1016/j.ophtha.2010.12.019

    Article  PubMed  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iaculli C, Barone A, Scudieri M, Giovanna Palumbo M, Delle Noci N (2015) OUTER RETINAL TUBULATION: characteristics in patients with neovascular age-related macular degeneration. Retina 35:1979–1984. doi:10.1097/IAE.0000000000000609

    Article  CAS  PubMed  Google Scholar 

  • Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA (2010) Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol 55:501–515. doi:10.1016/j.survophthal.2010.03.004

    Article  PubMed  Google Scholar 

  • Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG (2013) Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology 120:1860–1870

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang L, Gianniou C, Ambresin A, Mantel I (2014) Refractory subretinal fluid in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab: visual acuity outcome. Graefes Arch Clin Exp Ophthalmol 253:1211–1216. doi:10.1007/s00417-014-2789-x

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3:3127–3137. doi:10.1364/BOE.3.003127

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402. doi:10.1073/pnas.1500185112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JJ, Chen CY, Mrejen S, Gallego-Pinazo R, Xu L, Marsiglia M, Boddu S, Freund KB (2014) The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am J Ophthalmol 158:769–77900. doi:10.1016/j.ajo.2014.07.006

    Article  PubMed  Google Scholar 

  • Kakehashi A, Schepens CL, Trempe CL (1994) Vitreomacular observations. I Vitreomacular adhesion and hole in the premacular hyaloid. Ophthalmology 101:1515–1521

    Article  CAS  PubMed  Google Scholar 

  • Keane PA, Patel PJ, Liakopoulos S, Heussen FM, Sadda SR, Tufail A (2012) Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol 57:389–414. doi:10.1016/j.survophthal.2012.01.006

    Article  PubMed  Google Scholar 

  • Khan S, Engelbert M, Imamura Y, Freund KB (2012) Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings. Retina (Philadelphia) 32:1057–1068. doi:10.1097/IAE.0b013e31823beb14

    Article  Google Scholar 

  • Kiss CG, Geitzenauer W, Simader C, Gregori G, Schmidt-Erfurth U (2009) Evaluation of ranibizumab-induced changes in high-resolution optical coherence tomographic retinal morphology and their impact on visual function. Invest Ophthalmol Vis Sci 50:2376–2383. doi:10.1167/iovs.08-2017

    Article  PubMed  Google Scholar 

  • Krebs I, Glittenberg C, Zeiler F, Binder S (2011) Spectral domain optical coherence tomography for higher precision in the evaluation of vitreoretinal adhesions in exudative age-related macular degeneration. Br J Ophthalmol 95:1415–1418. doi:10.1136/bjo.2010.192385

    Article  PubMed  Google Scholar 

  • Landa G, Gentile RC, Garcia PM, Muldoon TO, Rosen RB (2012) External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (London) 26:61–69. doi:10.1038/eye.2011.237

    Article  CAS  Google Scholar 

  • Lanzl IM, Seidova S-FF, Maier M, Lohmann C, Schmidt-Trucksäss A, Halle M, Kotliar KE (2011) Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection. Acta Ophthalmol 89:472–479. doi:10.1111/j.1755-3768.2009.01718.x

    Article  PubMed  Google Scholar 

  • Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ, Suslick KS, Boppart SA (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1546–1548

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Folgar FA, Maguire MG, Ying G-sS, Toth CA, Martin DF, Jaffe GJ, Group CR (2014) Outer retinal tubulation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology 121:2423–2431. doi:10.1016/j.ophtha.2014.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitgeb RA (2007) Optical coherence tomography-high resolution imaging of structure and function. Eng Med Biol Soc 2007:530–532. doi:10.1109/IEMBS.2007.4352344

    Google Scholar 

  • Liakopoulos S, Ongchin S, Bansal A, Msutta S, Walsh AC, Updike PG, Sadda SR (2008) Quantitative optical coherence tomography findings in various subtypes of neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 49:5048–5054. doi:10.1167/iovs.08-1877

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kang JU (2010) Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography. IEEE Trans Biomed Eng 57:2572–2575. doi:10.1109/TBME.2010.2058109

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang HF (2014) Noninvasive in vivo imaging of oxygen metabolic rate in the retina. Conf Proc Annu Int Conference IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2014:3865–3868. doi:10.1109/EMBC.2014.6944467

    Google Scholar 

  • Liu Y, Wen F, Huang S, Luo G, Yan H, Sun Z, Wu D (2007) Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol 245:1441–1445. doi:10.1007/s00417-007-0575-8

    Article  PubMed  Google Scholar 

  • López-Sáez MP, Ordoqui E, Tornero P, Baeza A, Sainza T, Zubeldia JM, Baeza ML (1998) Fluorescein-induced allergic reaction. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol 81(5 Pt 1):428–430. doi:10.1016/S1081-1206(10)63140-7

    Article  Google Scholar 

  • Lu CW, Lee CK, Tsai MT, Wang YM, Yang CC (2008) Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Opt Lett 33:416–418

    Article  PubMed  Google Scholar 

  • Macular-Photocoagulation-Study-Group (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol 109:1242–1257

    Article  Google Scholar 

  • Major JC, Wykoff CC, Mariani AF, Chen E, Croft DE, Brown DM (2014) Comparison of spectral-domain and time-domain optical coherence tomography in the detection of neovascular age-related macular degeneration activity. Retina (Philadelphia) 34:48–54. doi:10.1097/IAE.0b013e3182965743

    Article  Google Scholar 

  • Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840

    Article  PubMed  Google Scholar 

  • Malamos P, Sacu S, Georgopoulos M, Kiss C, Pruente C, Schmidt-Erfurth U (2009) Correlation of high-definition optical coherence tomography and fluorescein angiography imaging in neovascular macular degeneration. Invest Ophthalmol Vis Sci 50:4926–4933. doi:10.1167/iovs.09-3610

    Article  PubMed  Google Scholar 

  • Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ, Group CR (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908. doi:10.1056/NEJMoa1102673

    Article  CAS  PubMed  Google Scholar 

  • Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL 3rd, Comparison of Age-Related Macular Degeneration Treatments Trials Research G (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119:1388–1398. doi:10.1016/j.ophtha.2012.03.053

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruko I, Iida T, Saito M, Nagayama D, Saito K (2007) Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 144:15–22. doi:10.1016/j.ajo.2007.03.047

    Article  PubMed  Google Scholar 

  • Mathew R, Pefkianaki M, Kopsachilis N, Brar M, Richardson M, Sivaprasad S (2014) Correlation of fundus fluorescein angiography and spectral-domain optical coherence tomography in identification of membrane subtypes in neovascular age-related macular degeneration. Ophthalmol J Int d’ophtalmol Int J Ophthalmol Zeitschrift für Augenheilkunde 231:153–159. doi:10.1159/000355091

    Article  Google Scholar 

  • Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, Papp A, Simader C, Schmidt-Erfurth U (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120:2620–2629. doi:10.1016/j.ophtha.2013.05.032

    Article  PubMed  Google Scholar 

  • Mojana F, Cheng L, Bartsch DU, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146(2):218–227. doi:10.1016/j.ajo.2008.04.027

    Article  PubMed  PubMed Central  Google Scholar 

  • Moult E, Choi W, Waheed NK, Adhi M, Lee B, Lu CD, Jayaraman V, Potsaid B, Rosenfeld PJ, Duker JS, Fujimoto JG (2014) Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 45:496–505. doi:10.3928/23258160-20141118-03

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukai R, Sato T, Kishi S (2014) A hyporeflective space between hyperreflective materials in pigment epithelial detachment and Bruch’s membrane in neovascular age-related macular degeneration. BMC Ophthalmol 14:159. doi:10.1186/1471-2415-14-159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagiel A, Freund KB, Spaide RF, Munch IC, Larsen M, Sarraf D (2013) Mechanism of retinal pigment epithelium tear formation following intravitreal anti-vascular endothelial growth factor therapy revealed by spectral-domain optical coherence tomography. Am J Ophthalmol 156:981–98800. doi:10.1016/j.ajo.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  • Neudorfer M, Weinberg A, Loewenstein A, Barak A (2012) Differential optical density of subretinal spaces. Invest Ophthalmol Vis Sci 53:3104–3110. doi:10.1167/iovs.11-8700

    Article  PubMed  Google Scholar 

  • Pemp B, Schmetterer L (2008) Ocular blood flow in diabetes and age-related macular degeneration. Can J Ophthalmol J Can d’ophtalmol 43:295–301. doi:10.3129/i08-049

    Article  Google Scholar 

  • Querques G, Souied EH, Freund KB (2013) Multimodal imaging of early stage 1 type 3 neovascularization with simultaneous eye-tracked spectral-domain optical coherence tomography and high-speed real-time angiography. Retina (Philadelphia) 33:1881–1887. doi:10.1097/IAE.0b013e3182923448

    Article  Google Scholar 

  • Ritter M, Simader C, Bolz M, Deák GG, Mayr-Sponer U, Sayegh R, Kundi M, Schmidt-Erfurth UM (2014) Intraretinal cysts are the most relevant prognostic biomarker in neovascular age-related macular degeneration independent of the therapeutic strategy. Br J Ophthalmol 98:1629–1635. doi:10.1136/bjophthalmol-2014-305186

    Article  PubMed  Google Scholar 

  • Roberts P, Mittermueller TJ, Montuoro A, Sulzbacher F, Munk M, Sacu S, Schmidt-Erfurth U (2014) A quantitative approach to identify morphological features relevant for visual function in ranibizumab therapy of neovascular AMD. Invest Ophthalmol Vis Sci 55:6623–6630. doi:10.1167/iovs.14-14293

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431. doi:10.1056/NEJMoa054481

    Article  CAS  PubMed  Google Scholar 

  • Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR, Folwell MA, Williams DR, Dubra A, Chung MM (2013) In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 4:2527–2539. doi:10.1364/BOE.4.002527

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouvas AA, Papakostas TD, Ntouraki A, Douvali M, Vergados I, Ladas ID (2010) Angiographic and OCT features of retinal angiomatous proliferation. Eye (Lond) 24:1633. doi:10.1038/eye.2010.134

    Article  CAS  Google Scholar 

  • Saito M, Iida T, Nagayama D (2008) Cross-sectional and en face optical coherence tomographic features of polypoidal choroidal vasculopathy. Retina (Philadelphia) 28:459–464. doi:10.1097/IAE.0b013e318156db60

    Article  Google Scholar 

  • Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115:1071. doi:10.1016/j.ophtha.2007.09.001

    Article  PubMed  Google Scholar 

  • Sayanagi K, Sharma S, Kaiser PK (2009) Photoreceptor status after antivascular endothelial growth factor therapy in exudative age-related macular degeneration. Br J Ophthalmol 93:622–626. doi:10.1136/bjo.2008.151977

    Article  CAS  PubMed  Google Scholar 

  • Sayanagi K, Gomi F, Ikuno Y, Akiba M, Nishida K (2014) Comparison of spectral-domain and high-penetration OCT for observing morphologic changes in age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 252:3–9. doi:10.1007/s00417-013-2474-5

    Article  PubMed  Google Scholar 

  • Sayanagi K, Gomi F, Akiba M, Sawa M, Hara C, Nishida K (2015) En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol 99:29–35. doi:10.1136/bjophthalmol-2013-304658

    Article  PubMed  Google Scholar 

  • Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA (2015) OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION: optical coherence tomographic findings correspond to histology. Retina 35:1339–1350. doi:10.1097/IAE.0000000000000471

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlanitz FG, Baumann B, Spalek T, Schütze C, Ahlers C, Pircher M, Götzinger E, Hitzenberger CK, Schmidt-Erfurth U (2011) Performance of automated drusen detection by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 52:4571–4579. doi:10.1167/iovs.10-6846

    Article  PubMed  Google Scholar 

  • Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155. doi:10.1016/j.exer.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Erfurth U, Eldem B, Guymer R, Korobelnik J-FF, Schlingemann RO, Axer-Siegel R, Wiedemann P, Simader C, Gekkieva M, Weichselberger A, Group ES (2011) Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology 118:831–839. doi:10.1016/j.ophtha.2010.09.004

    Article  PubMed  Google Scholar 

  • Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Monés J, Richard G, Bandello F, European Society of Retina S (2014a) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98:1144–1167. doi:10.1136/bjophthalmol-2014-305702

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Erfurth U, Kaiser PK, Korobelnik J-FF, Brown DM, Chong V, Nguyen QD, Ho AC, Ogura Y, Simader C, Jaffe GJ, Slakter JS, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Sowade O, Zeitz O, Norenberg C, Sandbrink R, Heier JS (2014b) Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology 121:193–201. doi:10.1016/j.ophtha.2013.08.011

    Article  PubMed  Google Scholar 

  • Schmidt-Erfurth U, Waldstein SM, Deak G-GG, Kundi M, Simader C (2015) Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology 122:822–832. doi:10.1016/j.ophtha.2014.11.017

    Article  PubMed  Google Scholar 

  • Schulze S, Hoerle S, Mennel S, Kroll P (2008) Vitreomacular traction and exudative age-related macular degeneration. Acta Ophthalmol 86:470–481. doi:10.1111/j.1755-3768.2008.01210.x

    Article  PubMed  Google Scholar 

  • Schütze C, Wedl M, Baumann B, Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2015) Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Am J Ophthalmol 159:1100–1114.e1. doi:10.1016/j.ajo.2015.02.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz DM, Fingler J, Kim DY, Zawadzki RJ, Morse LS, Park SS, Fraser SE, Werner JS (2014) Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 121:180–187. doi:10.1016/j.ophtha.2013.09.002

    Article  PubMed  Google Scholar 

  • Simader C, Ritter M, Bolz M, Deák GG, Mayr-Sponer U, Golbaz I, Kundi M, Schmidt-Erfurth UM (2014) Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related macular degeneration. Ophthalmology 121:1237–1245. doi:10.1016/j.ophtha.2013.12.029

    Article  PubMed  Google Scholar 

  • Slakter JS, Yannuzzi LA, Schneider U, Sorenson JA, Ciardella A, Guyer DR, Spaide RF, Freund KB, Orlock DA (2000) Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration. Ophthalmology 107:742. doi:10.1016/S0161-6420(00)00009-9

    Article  CAS  PubMed  Google Scholar 

  • Song W, Wei Q, Jiao S, Zhang HF (2013) Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography. J Vis Exp JoVE 71:e4390. doi:10.3791/4390

    Google Scholar 

  • Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol 147:644–652. doi:10.1016/j.ajo.2008.10.005

    Article  PubMed  Google Scholar 

  • Spaide RF (2015) Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol 160:6–16. doi:10.1016/j.ajo.2015.04.012

    Article  PubMed  Google Scholar 

  • Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500. doi:10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  • Sulzbacher F, Kiss C, Munk M, Deak G, Sacu S, Schmidt-Erfurth U (2011) Diagnostic evaluation of type 2 (classic) choroidal neovascularization: optical coherence tomography, indocyanine green angiography, and fluorescein angiography. Am J Ophthalmol 152:799–8060. doi:10.1016/j.ajo.2011.04.011

    Article  PubMed  Google Scholar 

  • Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864–1866

    Article  CAS  PubMed  Google Scholar 

  • Tulvatana W, Adamian M, Berson EL, Dryja TP (1999) Photoreceptor rosettes in autosomal dominant retinitis pigmentosa with reduced penetrance. Arch Ophthalmol 117:399–402

    Article  CAS  PubMed  Google Scholar 

  • Ueda-Arakawa N, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Yoshimura N (2012) Visual prognosis of eyes with submacular hemorrhage associated with exudative age-related macular degeneration. Jpn J Ophthalmol 56:589–598. doi:10.1007/s10384-012-0191-y

    Article  PubMed  Google Scholar 

  • Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Optics express 13(9):3252–3258

    Google Scholar 

  • Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, Kusaka S, Tano Y (2009) Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology 116:519–528. doi:10.1016/j.ophtha.2008.10.001

    Article  PubMed  Google Scholar 

  • Waldstein SM, Sponer U, Simader C, Sacu S, Schmidt-Erfurth U (2012) Influence of vitreomacular adhesion on the development of exudative age-related macular degeneration: 4-year results of a longitudinal study. Retina (Philadelphia, Pa) 32:424–433. doi:10.1097/IAE.0b013e3182278b80

    Article  Google Scholar 

  • Waldstein SM, Ritter M, Simader C, Mayr-Sponer U, Kundi M, Schmidt-Erfurth U (2014) Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration. Am J Ophthalmol 158:328–3360. doi:10.1016/j.ajo.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical Doppler tomography. Opt Lett 20:1337–1339

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2007) In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 12:41215. doi:10.1117/1.2772871

    Article  Google Scholar 

  • Wang Y, Fawzi AA, Tan O, Zhang X, Huang D (2011a) Flicker-induced changes in retinal blood flow assessed by Doppler optical coherence tomography. Biomed Opt Express 2:1852–1860. doi:10.1364/BOE.001852

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fawzi AA, Varma R, Sadun AA, Zhang X (2011b) Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 52:840–845. doi:10.1167/iovs.10-5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werkmeister RM, Dragostinoff N, Pircher M, Götzinger E, Hitzenberger CK, Leitgeb RA, Schmetterer L (2008) Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt Lett 33:2967–2969

    Article  PubMed  Google Scholar 

  • Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463. doi:10.1117/1.1482379

    Article  PubMed  Google Scholar 

  • Wolff B, Matet A, Vasseur V, Sahel J-AA, Mauget-Faÿsse M (2012) En face OCT imaging for the diagnosis of outer retinal tubulations in age-related macular degeneration. J Ophthalmol 2012:542417. doi:10.1155/2012/542417

    PubMed  PubMed Central  Google Scholar 

  • Wolf-Schnurrbusch UE, Ghanem R, Rothenbuehler SP, Enzmann V, Framme C, Wolf S (2011) Predictors of short-term visual outcome after anti-VEGF therapy of macular edema due to central retinal vein occlusion. Invest Ophthalmol Vis Sci 52:3334–3337. doi:10.1167/iovs.10-6097

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Yao J, Wang LV (2014) Photoacoustic tomography: principles and advances. Electromagn waves (Cambridge, Mass) 147:1–22

    Article  Google Scholar 

  • Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina (Philadelphia, Pa) 21:416–434

    Article  CAS  Google Scholar 

  • Yannuzzi LA, Freund KB, Takahashi BS (2008) Review of retinal angiomatous proliferation or type 3 neovascularization. Retina (Philadelphia, Pa) 28:375–384. doi:10.1097/IAE.0b013e3181619c55

    Article  Google Scholar 

  • Ying GS, Kim BJ, Maguire MG, Huang J, Daniel E, Jaffe GJ, Grunwald JE, Blinder KJ, Flaxel CJ, Rahhal F, Regillo C, Martin DF, Group CR (2014) Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. JAMA Ophthalmol 132:915–921. doi:10.1001/jamaophthalmol.2014.1019

    Article  PubMed  PubMed Central  Google Scholar 

  • You JY, Chung H, Kim HC (2012) Evaluation of changes in choroidal neovascularization secondary to age-related macular degeneration after anti-VEGF therapy using spectral domain optical coherence tomography. Curr Eye Res 37:438–445. doi:10.3109/02713683.2011.647227

    Article  CAS  PubMed  Google Scholar 

  • Zacks DN, Johnson MW (2004) Retinal angiomatous proliferation: optical coherence tomographic confirmation of an intraretinal lesion. Arch Ophthalmol (Chicago, Ill : 1960) 122:932–933. doi:10.1001/archopht.122.6.932

    Article  Google Scholar 

  • Zayit-Soudry S, Moroz I, Loewenstein A (2007) Retinal pigment epithelial detachment. Surv Ophthalmol 52:227–243. doi:10.1016/j.survophthal.2007.02.008

    Article  PubMed  Google Scholar 

  • Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB (2009) Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol 127:1596–1602. doi:10.1001/archophthalmol.2009.326

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Schmidt-Erfurth MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Told, R., Waldstein, S.M., Schmidt-Erfurth, U. (2017). Neovascular Age-Related Macular Degeneration. In: Meyer, C., Saxena, S., Sadda, S. (eds) Spectral Domain Optical Coherence Tomography in Macular Diseases. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3610-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3610-8_15

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3608-5

  • Online ISBN: 978-81-322-3610-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics