Optical Coherence Tomography: A Primer

  • Shivani Sinha
  • Prateep Phadikar
  • Sandeep Saxena


Optical coherence tomography (OCT) is a non invasive, non contact transpupillary interferometric technique for real time in vivo imaging of retinal microstructures. It is equivalent to ultrasound B-mode imaging with use of light instead of sound. Spectral Domain-OCT utilizes a broadband optical source and a processing unit, spectrometer. Fourier domain transformation utilizes an array of detectors in place of a moving mirror, to acquire A-scan concurrently. This increases the scanning speed to about 200 times faster than time domain OCT. The high sampling density hence achieved produces high-quality individual B-scan images. With the advent of swept source OCT and enhanced depth imaging protocol even choroid can be imaged. OCT angiography identifies retinal circulation using the intrinsic motion of the blood cells in vessel.


Optical Coherence Tomography Retinal Pigment Epithelium Retinal Nerve Fiber Layer Diabetic Macular Edema Internal Limit Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C et al (2004) Ultrahigh-resolution optical coherence tomography of the monkey fovea: identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125CrossRefPubMedGoogle Scholar
  2. Drexler W, Sattmann H, Hermann B, Ko TH, Stur M et al (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121:695–706CrossRefPubMedGoogle Scholar
  3. Duker JS, Waheed NK, Goldman D (2013) Handbook of retinal OCT: optical coherence tomography. Elsevier Health Sciences, LondonGoogle Scholar
  4. Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H et al (2008) Ultrahigh- resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094CrossRefPubMedGoogle Scholar
  5. Hogan JA, Alvarado MJ, Weddell JE (1971) Histology of the human eye. An atlas and textbook. WB Saunders, PhiladelphiaGoogle Scholar
  6. Jain A, Saxena S, Khanna VK et al (2013) Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis 19:1760–1768PubMedPubMedCentralGoogle Scholar
  7. Ko TH, Fujimoto JG, Duker JS, Paunescu LA, Drexler W et al (2004) Comparison of ultrahigh- and standard- resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111:2033–2043CrossRefPubMedPubMedCentralGoogle Scholar
  8. Krebs W, Krebs I (1991) Primate retina and choroid. In: Atlas of fine structure in man and monkey. Springer, New YorkGoogle Scholar
  9. Lu RW, Curcio CA, Zhang Y, Zhang QX, Pittler SJ et al (2012) Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina. J Biomed Opt 17:060504CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lumbroso B, Rispoli M (2009) Guide to interpreting spectral domain optical coherence tomography, 2nd edn. chapter 4. Jaypee highlights. pp 33–34Google Scholar
  11. Maheshwary AS, Oster SF et al (2010) The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol 150:63–67CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mehalow AK, Kameya S, Smith RS et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12:2179–2189Google Scholar
  13. Mrejen S, Spaide RF (2013) OCT: Imaging of choroid and beyond. Surv Ophthalmol 58:387–429CrossRefPubMedGoogle Scholar
  14. Murakami T, Nishijima K, Akagi T, Uji A, Horii T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53:1506–1511CrossRefPubMedGoogle Scholar
  15. Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y (2010) The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol 150:27–32CrossRefPubMedGoogle Scholar
  16. Omri S, Omri B et al (2010) The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 4:183–195PubMedPubMedCentralGoogle Scholar
  17. Paulerkhoff D, Heimes D, Spital G (2015) OCT ANGIOGRAPHY is this future of macular diagnosis? Klin Monbl Augenheilkd 232:1069–1076Google Scholar
  18. Podoleanu GA (2012) Optical coherence tomography. J Microsc 10:1365–2818Google Scholar
  19. Puche N, Querques G, Benhamou N, Tick S, Mimoun G et al (2010) High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol 94:1190–1196CrossRefPubMedGoogle Scholar
  20. Ryan SJ (2013) Retina, 5th edn. Elsevier, Health Sciences, LondonGoogle Scholar
  21. Sharma SR, Saxena S et al (2014) The association of grades of photoreceptor inner segment- ellipsoid band disruption with severity of retinopathy in type 2 diabetes mellitus. J Case Rep Stud 2:205Google Scholar
  22. Sharma SR, Saxena S, Srivastav K, Shukla RK, Mishra N et al (2015) Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations. Clinical and Experimental Ophthalmology, 43:429–436Google Scholar
  23. Spaide RF (2012) Questioning optical coherence tomography. Ophthalmology 119:2203–2204CrossRefPubMedGoogle Scholar
  24. Spaide RF, Curcio CA (2011b) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619CrossRefPubMedPubMedCentralGoogle Scholar
  25. Spaide RF, Koizumi H, Poconni ML (2008) Enhanced depth imaging spectral domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefPubMedGoogle Scholar
  26. Spaide RF, Klancnik JM, Cooney MJ (2014) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:E1–E6Google Scholar
  27. Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A et al (2006) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47:5522–5528CrossRefPubMedPubMedCentralGoogle Scholar
  28. Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I et al (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579CrossRefPubMedPubMedCentralGoogle Scholar
  29. Staurenghi G, Sadda S et al (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. The IN.OCT consensus. Ophthalmology 121:1572–1578CrossRefPubMedGoogle Scholar
  30. Wei J, Lumbroso B, Jang B, Davis J, inventors; Optovue, Inc., assignee (2012) Computer-aided diagnosis of retinal pathologies using frontal en-face views of optical coherence tomography. United States patent application US 13/360,503Google Scholar
  31. Yamauchi Y, Yagi H, Usui Y et al (2011) Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography. Clin Ophthalmol 5:1649–1653Google Scholar
  32. Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA et al (2005) Adaptive-optics optical coherence tomography for high- resolution and high- speed 3D retinal in vivo imaging. Opt Express 13:8532–8546CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Shivani Sinha
    • 1
  • Prateep Phadikar
    • 1
  • Sandeep Saxena
    • 1
  1. 1.Department of OphthalmologyKing George’s Medical UniversityLucknowIndia

Personalised recommendations