Advertisement

Azoospermia: Diagnosis and Management

  • Satya Srini Vasan
Chapter

Abstract

Azoospermia is one of the major reproductive disorders which cause male infertility in humans; however, the etiology of this disease is largely unknown. The reliable diagnosis of the absence of spermatozoa in a semen sample is an important criterion not only for diagnosing male infertility but also for ascertaining the success of vasectomy and for determining the efficacy of hormonal contraception (Aziz 2013).

Keywords

Cystic Fibrosis Transmembrane Conductance Regulator Seminal Plasma Ejaculatory Duct Hypogonadotropic Hypogonadism Maturation Arrest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. A ZC, Yang Y, Zhang SZ, Li N, Zhang W. Single nucleotide polymorphism C677T in the methylene-tetrahydrofolate reductase gene might be a genetic risk factor for infertility for Chinese men with azoospermia or severe oligozoospermia. Asian J Androl. 2007;9(1):57–62.PubMedCrossRefGoogle Scholar
  2. Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ. A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod. 2010;25(4):847–52.PubMedCrossRefGoogle Scholar
  3. Alhalabi M, Kenj M, Monem F, Mahayri Z, Abou Alchamat G, Madania A. High prevalence of genetic abnormalities in Middle Eastern patients with idiopathic non-obstructive azoospermia. J Assist Reprod Genet. 2013;30(6):799–805.PubMedPubMedCentralCrossRefGoogle Scholar
  4. American Urological Association. The optimal evaluation of the infertile male. Available from: http://www.auanet.org/content/media/optimalevaluation2010.pdf. Accessed 22 Feb 2012.
  5. Ando M, Yamaguchi K, Chiba K, Miyake H, Fujisawa M. Expression of VASA mRNA in testis as a significant predictor of sperm recovery by microdissection testicular sperm extraction in patient with nonobstructive azoospermia. J Androl. 2012;33(4):711–6.PubMedCrossRefGoogle Scholar
  6. Aziz N. The importance of semen analysis in the context of azoospermia. Clinics. 2013;68(S1):35–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aziz N, Agarwal A, Nallella KP, Thomas Jr AJ. Relationship between epidemiological features and aetiology of male infertility as diagnosed by a comprehensive infertility service provider. Reprod Biomed. 2006;12(2):209–14.CrossRefGoogle Scholar
  8. Baker K, Sabanegh E. Obstructive azoospermia: reconstructive techniques and results. Clinics. 2013;68(S1):61–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Batruch I, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, et al. Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J Proteome Res. 2012;11(3):1503–11.PubMedCrossRefGoogle Scholar
  10. Behulova R, Varga I, Strhakova L, Bozikova A, Gabrikova D, Boronova I, et al. Incidence of microdeletions in the AZF region of the Y chromosome in Slovak patients with azoospermia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(1):33–8.PubMedCrossRefGoogle Scholar
  11. Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science. 1978;202(4368):631–3.PubMedCrossRefGoogle Scholar
  12. Beliveau ME, Turek PJ. The value of testicular ‘mapping’ in men with non-obstructive azoospermia. Asian J Androl. 2011;13(2):225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boitrelle F, Robin G, Marcelli F, Albert M, Leroy-Martin B, Dewailly D, et al. A predictive score for testicular sperm extraction quality and surgical ICSI outcome in non-obstructive azoospermia: a retrospective study. Hum Reprod. 2011;26(12):3215–21.PubMedCrossRefGoogle Scholar
  14. Buffat C, Patrat C, Merlet F, Guibert J, Epelboin S, Thiounn N, et al. ICSI outcomes in obstructive azoospermia: influence of the origin of surgically retrieved spermatozoa and the cause of obstruction. Hum Reprod. 2006;21(4):1018–24.PubMedCrossRefGoogle Scholar
  15. Burrows PJ, Schrepferman CG, Lipshultz LI. Comprehensive office evaluation in the new millennium. Urol Clin North Am. 2002;29(4):873–94.PubMedCrossRefGoogle Scholar
  16. Cavallini G, Beretta G, Biagiotti G. Preliminary study of letrozole use for improving spermatogenesis in non-obstructive azoospermia patients with normal serum FSH. Asian J Androl. 2011;13(6):895–7. Remove this and letrazole !!.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ceylan C, Ceylan GG, Serel TA. The azoospermia factor locus-c region was found to be related to Klinefelter syndrome in Turkish patients. Genet Mol Res. 2010;9(2):1229–33.PubMedCrossRefGoogle Scholar
  18. Chan HC, Ruan YC, He Q, Chen MH, Chen H, Xu WM, et al. The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J Physiol. 2009;587(Pt 10):2187–95.PubMedCrossRefGoogle Scholar
  19. Chen SC, Hsieh JT, Yu HJ, Chang HC. Appropriate cut-off value for follicle-stimulating hormone in azoospermia to predict spermatogenesis. Reprod Biol Endocrinol. 2010;8:108.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cocuzza M, Alvarenga C, Pagani R. The epidemiology and etiology of azoospermia. Clinics. 2013;68(S1):15–26.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Crha I, Kralikova M, Melounova J, Ventruba P, Zakova J, Beharka R, et al. Seminal plasma homocysteine, folate and cobalamin in men with obstructive and non-obstructive azoospermia. J Assist Reprod Genet. 2010;27(9–10):533–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Daudin M, Bieth E, Bujan L, Massat G, Pontonnier F, Mieusset R. Congenital bilateral absence of the vas deferens: clinical characteristics, biological parameters, cystic fibrosis transmembrane conductance regulator gene mutations, and implications for genetic counseling. Fertil Steril. 2000;74(6):1164–74.PubMedCrossRefGoogle Scholar
  23. de la Taille A, Rigot JM, Mahe P, Gervais R, Dumur V, Lemaitre L, et al. Correlation of genitourinary abnormalities, spermiogram and CFTR genotype in patients with bilateral agenesis of the vas deferens. Prog Urol. 1998;8(3):370–6.PubMedGoogle Scholar
  24. Deffieux X, Antoine JM. Inhibins, activins and anti-Mullerian hormone: structure, signalling pathways, roles and predictive value in reproductive medicine. Gynecol Obstet Fertil. 2003;31(11):900–11.PubMedCrossRefGoogle Scholar
  25. Donohue RE, Fauver HE. Unilateral absence of the vas deferens. A useful clinical sign. JAMA. 1989;261(8):1180–2.PubMedCrossRefGoogle Scholar
  26. Donoso P, Tournaye H, Devroey P. Which is the best sperm retrieval technique for non-obstructive azoospermia? A systematic review. Hum Reprod Update. 2007;13(6):539–49.PubMedCrossRefGoogle Scholar
  27. Dorosh A, Tepla O, Zatecka E, Ded L, Koci K, Peknicova J. Expression analysis of MND1/GAJ, SPATA22, GAPDHS and ACR genes in testicular biopsies from non-obstructive azoospermia (NOA) patients. Reprod Biol Endocrinol. 2013;11:42.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Drabovich AP, Dimitromanolakis A, Saraon P, Soosaipillai A, Batruch I, Mullen B, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013;5(212):212ra160.PubMedCrossRefGoogle Scholar
  29. Dube E, Hermo L, Chan PT, Cyr DG. Alterations in the human blood-epididymis barrier in obstructive azoospermia and the development of novel epididymal cell lines from infertile men. Biol Reprod. 2010;83(4):584–96.PubMedCrossRefGoogle Scholar
  30. Eliasson R. Analysis of semen. In: Burger H, de Kretser D, editors. The testis. New York: Raven; 1981. p. 381–99.Google Scholar
  31. Esteves SC. Microdissection testicular sperm extraction (micro-TESE) as a sperm acquisition method for men with nonobstructive azoospermia seeking fertility: operative and laboratory aspects. Int Braz J Urol. 2013;39(3):440; discussion 441.PubMedCrossRefGoogle Scholar
  32. Esteves SC, Agarwal A. Reproductive outcomes, including neonatal data, following sperm injection in men with obstructive and nonobstructive azoospermia: case series and systematic review. Clinics (Sao Paulo). 2013;68 Suppl 1:141–50.CrossRefGoogle Scholar
  33. Esteves SC, Lee W, Benjamin DJ, Seol B, Verza Jr S, Agarwal A. Reproductive potential of men with obstructive azoospermia undergoing percutaneous sperm retrieval and intracytoplasmic sperm injection according to the cause of obstruction. J Urol. 2013;189(1):232–7.PubMedCrossRefGoogle Scholar
  34. Everaert K, De Croo I, Kerckhaert W, Dekuyper P, Dhont M, Van der Elst J, et al. Long term effects of micro-surgical testicular sperm extraction on androgen status in patients with non obstructive azoospermia. BMC Urol. 2006;6:9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007a;14(6):734–45.PubMedCrossRefGoogle Scholar
  36. Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab. 2007b;92(3):762–70.PubMedCrossRefGoogle Scholar
  37. Finkel DM, Phillips JL, Snyder PJ. Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N Engl J Med. 1985;313(11):651–5.PubMedCrossRefGoogle Scholar
  38. Gatta V, Raicu F, Ferlin A, Antonucci I, Scioletti AP, Garolla A, et al. Testis transcriptome analysis in male infertility: new insight on the pathogenesis of oligo-azoospermia in cases with and without AZFc microdeletion. BMC Genomics. 2010;11:401.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Glina S, Vieira M. Prognostic factors for sperm retrieval in non-obstructive azoospermia. Clinics (Sao Paulo). 2013;68 Suppl 1:121–4.CrossRefGoogle Scholar
  40. Glina S, Soares JB, Antunes Jr N, Galuppo AG, Paz LB, Wonchockier R. Testicular histopathological diagnosis as a predictive factor for retrieving spermatozoa for ICSI in non-obstructive azoospermic patients. Int Braz J Urol. 2005;31(4):338–41.PubMedCrossRefGoogle Scholar
  41. Golan R, Cooper TG, Oschry Y, Oberpenning F, Schulze H, Shochat L, et al. Changes in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Hum Reprod. 1996;11(7):1457–62.PubMedCrossRefGoogle Scholar
  42. Goulis DG, Polychronou P, Mikos T, Grimbizis G, Gerou S, Pavlidou V, et al. Serum inhibin-B and follicle stimulating hormone as predictors of the presence of sperm in testicular fine needle aspirate in men with azoospermia. Hormones (Athens). 2008;7(2):140–7.Google Scholar
  43. Hamada A, Esteves SC, Agarwal A. Genetics and male infertility. In: Dubey A, editor. Infertility – diagnosis, management & IVF. 1st ed. New Delhi: Jaypee Brothers Medical Publishers; 2012. p. 113–60.CrossRefGoogle Scholar
  44. Hamada AJ, Esteves SC, Agarwal A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics. 2013;68(S1):39–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Han Y, Feng HL, Sandlow JI, Haines CJ. Comparing expression of progesterone and estrogen receptors in testicular tissue from men with obstructive and nonobstructive azoospermia. J Androl. 2009;30(2):127–33.PubMedCrossRefGoogle Scholar
  46. Hauser R, Yogev L, Paz G, Yavetz H, Azem F, Lessing JB, et al. Comparison of efficacy of two techniques for testicular sperm retrieval in nonobstructive azoospermia: multifocal testicular sperm extraction versus multifocal testicular sperm aspiration. J Androl. 2006;27(1):28–33.PubMedCrossRefGoogle Scholar
  47. Hernandez Uribe L, Hernandez Marin I, Cervera-Aguilar R, Ayala AR. Frequency and etiology of azoospermia in the study of infertile couples. Ginecol Obstet Mex. 2001;69:322–6.PubMedGoogle Scholar
  48. Ho KL, Wong MH, Tam PC. Microsurgical vasoepididymostomy for obstructive azoospermia. Hong Kong Med J. 2009;15(6):452–7.PubMedGoogle Scholar
  49. Hoffman AR, Crowley WF. Induction of puberty in Men by long-term pulsatile administration of low-dose gonadotropin-releasing hormone. New Engl J Med. 1982;307(20):1237–41.PubMedCrossRefGoogle Scholar
  50. Hu Z, Xia Y, Guo X, Dai J, Li H, Hu H, Jiang Y, Lu F, Wu Y, Yang X, Li H, Yao B, et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet. 2012;44:183–6.CrossRefGoogle Scholar
  51. Hussein A, Ozgok Y, Ross L, Niederberger C. Clomiphene administration for cases of nonobstructive azoospermia: a multicenter study. J Androl. 2005;26(6):787–91; discussion 792–3.PubMedCrossRefGoogle Scholar
  52. Inci K, Gunay LM. The role of varicocele treatment in the management of non-obstructive azoospermia. Clinics (Sao Paulo). 2013;68 Suppl 1:89–98.CrossRefGoogle Scholar
  53. Irie S, Tsujimura A, Miyagawa Y, Ueda T, Matsuoka Y, Matsui Y, et al. Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia. J Androl. 2009;30(4):426–31.PubMedCrossRefGoogle Scholar
  54. Ishikawa T. Surgical recovery of sperm in non-obstructive azoospermia. Asian J Androl. 2012;14(1):109–15.PubMedCrossRefGoogle Scholar
  55. Jequier AM. Obstructive azoospermia: a study of 102 patients. Clin Reprod Fertil. 1985;3(1):21–36.PubMedGoogle Scholar
  56. Jezequel P, Dubourg C, Le Lannou D, Odent S, Le Gall JY, Blayau M, et al. Molecular screening of the CFTR gene in men with anomalies of the vas deferens: identification of three novel mutations. Mol Hum Reprod. 2000;6(12):1063–7.PubMedCrossRefGoogle Scholar
  57. Jiang Y, Cao Q, Zhao X, Li L, Li S, Gao F. Percutaneous epididymal sperm aspiration and short time insemination in the treatment of men with obstructive azoospermia. J Assist Reprod Genet. 2013;30(9):1175–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Johnston DS, Wooters J, Kopf GS, Qiu Y, Roberts KP. Analysis of the human sperm proteome. Ann N Y Acad Sci. 2005;1061:190–202.PubMedCrossRefGoogle Scholar
  59. Koscinski I, Wittemer C, Rigot JM, De Almeida M, Hermant E, Defossez A. Seminal haploid cell detection by flow cytometry in non-obstructive azoospermia: a good predictive parameter for testicular sperm extraction. Hum Reprod. 2005;20(7):1915–20.PubMedCrossRefGoogle Scholar
  60. Kuligowska E, Fenlon HM. Transrectal US in male infertility: spectrum of findings and role in patient care. Radiology. 1998;207(1):173–81.PubMedCrossRefGoogle Scholar
  61. Kumar R. Medical management of non-obstructive azoospermia. Clinics. 2013;68(S1):75–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee JY, Dada R, Sabanegh E, Carpi A, Agarwal A. Role of genetics in azoospermia. Urology. 2011;77(3):598–601.PubMedCrossRefGoogle Scholar
  63. Li H, Wu C, Gu X, Xiong C. A novel application of cell-free seminal mRNA: non-invasive identification of the presence of germ cells or complete obstruction in men with azoospermia. Hum Reprod. 2012;27(4):991–7.PubMedCrossRefGoogle Scholar
  64. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lin YH, Lin YM, Teng YN, Hsieh TY, Lin YS, Kuo PL. Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil Steril. 2006;86:1650–8.PubMedCrossRefGoogle Scholar
  66. Lipshultz LI, Corriere Jr JN. Progressive testicular atrophy in the varicocele patient. J Urol. 1977;117(2):175–6.PubMedGoogle Scholar
  67. Ma Y, Chen B, Wang H, Hu K, Huang Y. Prediction of sperm retrieval in men with non-obstructive azoospermia using artificial neural networks: leptin is a good assistant diagnostic marker. Hum Reprod. 2011;26(2):294–8.PubMedCrossRefGoogle Scholar
  68. Ma M, Yang S, Zhang Z, Li P, Gong Y, Liu L, et al. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum Reprod. 2013;28(7):1863–73.PubMedCrossRefGoogle Scholar
  69. Mafra FA, Christofolini DM, Bianco B, Gava MM, Glina S, Belangero SI, et al. Chromosomal and molecular abnormalities in a group of Brazilian infertile men with severe oligozoospermia or non-obstructive azoospermia attending an infertility service. Int Braz J Urol. 2011;37(2):244–50; discussion 250–1.PubMedCrossRefGoogle Scholar
  70. Mak V, Jarvi KA. The genetics of male infertility. J Urol. 1996;156(4):1245–56; discussion 56–7.PubMedCrossRefGoogle Scholar
  71. Male Infertility Best Practice Policy Committee of the American Urological Association; Practice Committee of the American Society for Reproductive Medicine. Report on optimal evaluation of the infertile male. Fertil Steril. 2006;86(5 Suppl 1):S202–9.Google Scholar
  72. Mau Kai C, Juul A, McElreavey K, Ottesen AM, Garn ID, Main KM, et al. Sons conceived by assisted reproduction techniques inherit deletions in the azoospermia factor (AZF) region of the Y chromosome and the DAZ gene copy number. Hum Reprod. 2008;23(7):1669–78.PubMedCrossRefGoogle Scholar
  73. McLachlan RI, Mallidis C, Ma K, Bhasin S, de Kretser DM. Genetic disorders and spermatogenesis. Reprod Fertil Dev. 1998;10(1):97–104.PubMedCrossRefGoogle Scholar
  74. Mirfakhraie R, Kalantar SM, Mirzajani F, Montazeri M, Salsabili N, Houshmand M. A novel mutation in the transactivation-regulating domain of the androgen receptor in a patient with azoospermia. J Androl. 2011;32(4):367–70.PubMedCrossRefGoogle Scholar
  75. Miyamoto T, Koh E, Sakugawa N, Sato H, Hayashi H, Namiki M, et al. Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J Assist Reprod Genet. 2008;25(11–12):553–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki M, Horikawa M, et al. Single nucleotide polymorphism in the UBR2 gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J Assist Reprod Genet. 2011;28(8):743–6.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki M, Horikawa M, et al. Single-nucleotide polymorphisms in HORMAD1 may be a risk factor for azoospermia caused by meiotic arrest in Japanese patients. Asian J Androl. 2012a;14(4):580–3.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki M, Horikawa M, et al. Single nucleotide polymorphisms in the SEPTIN12 gene may be associated with azoospermia by meiotic arrest in Japanese men. J Assist Reprod Genet. 2012b;29(1):47–51.PubMedCrossRefGoogle Scholar
  79. Miyaoka R, Esteves SC. Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: Do etiology, retrieval techniques and gamete source play a role? Clinics. 2013;68(S1):111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. O’Connell M, McClure N, Lewis SE. Mitochondrial DNA deletions and nuclear DNA fragmentation in testicular and epididymal human sperm. Hum Reprod. 2002;17(6):1565–70.PubMedCrossRefGoogle Scholar
  81. Oates RD, Amos JA. The genetic basis of congenital bilateral absence of the vas deferens and cystic fibrosis. J Androl. 1994;15(1):1–8.PubMedGoogle Scholar
  82. Okada H, Tajima A, Shichiri K, Tanaka A, Tanaka K, Inoue I. Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet. 2008;4(2):e26.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pandiyan N, Jequier AM. Mitotic chromosomal anomalies among 1210 infertile men. Hum Reprod. 1996;11(12):2604–8.PubMedCrossRefGoogle Scholar
  84. Patrizio P, Leonard DG. Mutations of the cystic fibrosis gene and congenital absence of the vas deferens. Results Probl Cell Differ. 2000;28:175–86.PubMedCrossRefGoogle Scholar
  85. Peschka B, Leygraaf J, Van der Ven K, Montag M, Schartmann B, Schubert R, et al. Type and frequency of chromosome aberrations in 781 couples undergoing intracytoplasmic sperm injection. Hum Reprod. 1999;14(9):2257–63.PubMedCrossRefGoogle Scholar
  86. Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Practice Committee of American Society for Reproductive Medicine in collaboration with Society for Male Reproduction and Urology. The management of infertility due to obstructive azoospermia. Fertil Steril. 2008;90(5 Suppl):S121–4.Google Scholar
  88. Pylyp LY, Spinenko LO, Verhoglyad NV, Zukin VD. Chromosomal abnormalities in patients with oligozoospermia and non-obstructive azoospermia. J Assist Reprod Genet. 2013;30(5):729–32.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ratbi I, Legendre M, Niel F, Martin J, Soufir JC, Izard V, et al. Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling. Hum Reprod. 2007;22(5):1285–91.PubMedCrossRefGoogle Scholar
  90. Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995;10(4):383–93.PubMedCrossRefGoogle Scholar
  91. Sadeghi-Nejad H, Farrokhi F. Genetics of azoospermia: current knowledge, clinical implications, and future directions. Part II: Y chromosome microdeletions. Urol J. 2007;4(4):192–206.PubMedGoogle Scholar
  92. Sato Y, Jinam T, Iwamoto T, Yamauchi A, Imoto I, Inoue I, et al. Replication study and meta-analysis of human nonobstructive azoospermia in Japanese populations. Biol Reprod. 2013;88(4):87.PubMedCrossRefGoogle Scholar
  93. Shefi S, Turek PJ. Sex chromosome abnormalities and male infertility: a clinical perspective. In: De Jonge C, Barrat C, editors. The sperm cell production, maturation, fertilization, regeneration. Cambridge: Cambridge University Press; 2006. p. 261–78.CrossRefGoogle Scholar
  94. Shiraishi K, Ohmi C, Shimabukuro T, Matsuyama H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum Reprod. 2012;27(2):331–9.PubMedCrossRefGoogle Scholar
  95. Sigman M, Jarow JP. Endocrine evaluation of infertile men. Urology. 1997;50(5):659–64.PubMedCrossRefGoogle Scholar
  96. Stahl PJ, Mielnik AN, Barbieri CE, Schlegel PN, Paduch DA. Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia. Asian J Androl. 2012;14(5):676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sykiotis GP, Hoang XH, Avbelj M, Hayes FJ, Thambundit A, Dwyer A, et al. Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab. 2010;95(6):3019–27.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tesarik J, Sousa M, Greco E, Mendoza C. Spermatids as gametes: indications and limitations. Hum Reprod. 1998;13:89–107.PubMedCrossRefGoogle Scholar
  99. Toulis KA, Iliadou PK, Venetis CA, Tsametis C, Tarlatzis BC, Papadimas I, et al. Inhibin B and anti-Mullerian hormone as markers of persistent spermatogenesis in men with non-obstructive azoospermia: a meta-analysis of diagnostic accuracy studies. Hum Reprod Update. 2010;16(6):713–24.PubMedCrossRefGoogle Scholar
  100. Tuttelmann F, Werny F, Cooper TG, Kliesch S, Simoni M, Nieschlag E. Clinical experience with azoospermia: aetiology and chances for spermatozoa detection upon biopsy. Int J Androl. 2011;34(4):291–8.PubMedCrossRefGoogle Scholar
  101. Vicari E, Mongioi A, Calogero AE, Moncada ML, Sidoti G, Polosa P, et al. Therapy with human chorionic gonadotrophin alone induces spermatogenesis in men with isolated hypogonadotrophic hypogonadism—long term follow-up. Int J Androl. 1992;15(4):320–9.PubMedCrossRefGoogle Scholar
  102. Vutyavanich T, Piromlertamorn W, Sirirungsi W, Sirisukkasem S. Frequency of Y chromosome microdeletions and chromosomal abnormalities in infertile Thai men with oligozoospermia and azoospermia. Asian J Androl. 2007;9(1):68–75.PubMedCrossRefGoogle Scholar
  103. Woldringh GH, Horvers M, Janssen AJWM, Reuser JJCM, de Groot SAF, Steiner K, et al. Follow-up of children born after ICSI with epididymal spermatozoa. Hum Reprod. 2011;26(7):1759–67.PubMedCrossRefGoogle Scholar
  104. Wong PY. CFTR gene and male fertility. Mol Hum Reprod. 1998;4(2):107–10.PubMedCrossRefGoogle Scholar
  105. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.Google Scholar
  106. Wu Q, Chen G-W, Yan T-F, Wang H, Liu Y-L, Li Z, et al. Prevalent false positives of azoospermia factor a (AZFa) microdeletions caused by single-nucleotide polymorphism rs72609647 in the sY84 screening of male infertility. Asian J Androl. 2011;13(6):877–80.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C, et al. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–36.PubMedCrossRefGoogle Scholar
  108. Yurdakul T, Gokce G, Kilic O, Piskin MM. Transurethral resection of ejaculatory ducts in the treatment of complete ejaculatory duct obstruction. Int Urol Nephrol. 2008;40(2):369–72.PubMedCrossRefGoogle Scholar
  109. Zhao H, Xu J, Zhang H, Sun J, Sun Y, Wang Z, et al. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am J Hum Genet. 2012;90(5):900–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Department of AndrologyManipal Ankur Andrology and Reproductive ServicesBangaloreIndia

Personalised recommendations