Advertisement

Ultrastructure of Human Spermatozoa

  • Priya Kannan
Chapter

Abstract

Subfertility is a condition that affects approximately 1 in 15 couples worldwide which accounts to about 80 million couples (Boivin et al. 2007). Of all the cases of subfertility, male infertility alone accounts for at least 40–50 % of the problem. Sperm dysfunction (sperm being present in the ejaculate but lacking ‘normal’ function) is the single most common cause, affecting approximately 1 in 20 men (Barratt et al. 2009). But there is remarkably less literature and research on this highly specialized cell and even lesser research about the treatment modalities, especially since the advent of intracytoplasmic sperm injection (ICSI).

Keywords

Acrosome Reaction Sperm Head Primary Ciliary Dyskinesia Sperm Tail Fibrous Sheath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.Google Scholar
  2. Balhorn R, Weston S, Thomas C, Wyrobek A. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res. 1984;150:298–308. doi: 10.1016/0014-4827(84)90572-X.CrossRefPubMedGoogle Scholar
  3. Baltzer F. Theodor Boveri; Life and Work of a Great Biologist, 1862–1915. Univ of California Press; 1967.Google Scholar
  4. Barratt CL, Kay V, Oxenham SK. The human spermatozoon – a stripped down but refined machine. J Biol. 2009;8(7):63.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12. doi: 10.1093/humrep/dem046.CrossRefPubMedGoogle Scholar
  6. Bornens M, Bailly E, Gosti F, Keryer G. The centrosome: recent advances on structure and functions. Prog Mol Subcell Biol. 1990;11:86–114.CrossRefGoogle Scholar
  7. Camner P, Mossberg B, Afzelius BA. Evidence of congenitally nonfunctioning cilia in the tracheobronchial tract in two sub-jects. Am Rev Respir Dis. 1975;112:807–9.Google Scholar
  8. Clermont Y, Oko R, Hermo L. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: an electron microscope study. Anat Rec. 1990;227:447–57.CrossRefPubMedGoogle Scholar
  9. Curry MR, Watson PF. Sperm structure and function. In: Gemetes- the spermatozoon. New York: Press Syndicate of the University of Cambridge; 1995. p. 45–70.Google Scholar
  10. Farrell KW. Purification and reassembly of tubulin from outer doublet microtubules. Methods Cell Biol. 1982;24:61–78.CrossRefPubMedGoogle Scholar
  11. Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44:394–436. Guan J, Kinoshita M, Yuan L. Spatiotemporal association of DNAJB13 with the annulus during mouse sperm flagellum development. BMC Dev Biol. 2009;9:23.Google Scholar
  12. Friend DS. Plasma membrane diversity in a highly polarized cell. J Cell Biol. 1982;93:243–9.CrossRefPubMedGoogle Scholar
  13. Friend DS, Fawcett DW. Membrane differentiation in freeze-fracture mammalian sperm. J Cell Biol. 1974;63:641–64.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Green DPL. Sperm thrusts and the problem of penetration. Biol Rev Camb Philos Soc. 1988;63:70–105.CrossRefGoogle Scholar
  15. Guan J, Kinoshita M, Yuan L. Spatiotemporal association of DNAJB13 with the annulus during mouse sperm flagellum development. BMC Dev Biol. 2009;9:23. doi: 10.1186/1471-213X-9-23.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guen LE, Crozet N. Microtubule and centrosome distribution during sheep fertilization. Eur J Cell Biol. 1989;48:239–49.PubMedGoogle Scholar
  17. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8. doi: 10.1038/nature08162.PubMedPubMedCentralGoogle Scholar
  18. Holzbaur EL, Vallee RB. DYNEINS: molecular structure and cellular function. Annu Rev Cell Dev Biol. 1994;10:339–72.CrossRefGoogle Scholar
  19. Huang TTF, Yanagimachi R. Inner acrosomal membrane of mammalian spermatozoa: its properties and its possible function in fertilization. Am J Anat. 1985;174:249–68.CrossRefPubMedGoogle Scholar
  20. Johnson GD, Lalancette C. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction. 2010;141(1):21–36. doi: 10.1530/REP-10-0322.CrossRefPubMedGoogle Scholar
  21. Johnson GD, Lalancette C, Linnemann AK, ´de´ric Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction. 2011;141:21–36.CrossRefPubMedGoogle Scholar
  22. Kamiya R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol. 2002;219:115–55.Google Scholar
  23. Kazuo Inaba, Katsutoshi Mizuno. Sperm dysfunction and ciliopathy. Reproductive Medicine and Biology 2016;15:77–94.Google Scholar
  24. Koehler JK. Human sperm head ultrastructure: freeze etching study. J Ultrastruct Res. 1972;39:520–39.CrossRefPubMedGoogle Scholar
  25. Koehler JK. Lectins as probes of the spermatozoon surface. Arch Androl. 1981;6:197–217.CrossRefPubMedGoogle Scholar
  26. Kupker W, Schulze W, Diedrich K. Ultrastructure of gametes and intracytoplasmic sperm injection: the significance of sperm morphology. Hum Reprod. 1998;13 Suppl 1:99–106.CrossRefPubMedGoogle Scholar
  27. Lindemann CB, Orlando A, Kanous KS. The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition. J Cell Sci. 1992;102:249–60.PubMedGoogle Scholar
  28. Milisav I. Dynein and dynein-related genes. Cell Motil Cytoskeleton. 1998;39:261–72.CrossRefPubMedGoogle Scholar
  29. Mitchell V, Sigala J, Ballot C, Jumeau F, Barbotin AL, Duhamel A, Rives N, Rigot JM, Escalier D. and Peers MC. Light microscopy morphological characteristics of the sperm flagellum may be related to axonemal abnormalities. Andrologia. 2015;47:214–220. doi:  10.1111/and.12249
  30. Palermo G, Munne S, Cohel J. The human zygote inherits its mitotic potential from male gamete. Hum Reprod. 1994;9:1220–5.PubMedGoogle Scholar
  31. Pedersen H. Further observations on the fins structure of the human spermatozoa. Z Zelforsch. 1972a;123:305–15.CrossRefGoogle Scholar
  32. Pedersen H. The postacrosomal region of the spermatozoa of man and Macacaarctoides. J Ultrastruct Res. 1972b;40:366–77.CrossRefPubMedGoogle Scholar
  33. Pederson H. Observations on the axial filament of the human spermatozoa. J Ultrastuct Res. 1970;33:451–62.CrossRefGoogle Scholar
  34. Porter ME, Johnson KE. Differential localization of two isoforms of the regulatory subunit RII alpha of cAMP-dependent protein kinase in human sperm: biochemical and cytochemical study. Annu Rev Cell Dev Biol. 1989;5:119–51.CrossRefGoogle Scholar
  35. Rousseaux S, Reynoird N, Escoffier E, Thevenon J, Caron C, Khochbin S. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online. 2008;16:492–503. doi: 10.1016/S1472-6483(10)60456-7.CrossRefPubMedGoogle Scholar
  36. Sathananthan AH, Kola I, Osborna J, Trounson A. Centrioles in the beginning of human development. Proc Natl Acad Sci U S A. 1991;88:4806–10.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sathananthan AH, Ratnam SS, Ng SC, Tarin JJ, et al. The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod. 1996;11:345–56.CrossRefPubMedGoogle Scholar
  38. Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol. 1994;165:299–335.CrossRefPubMedGoogle Scholar
  39. Siegel MS, Bechtold DS, Willard JC, Poakoski KL. Partial characterization and purification of human sperminogen. Biol Reprod. 1987;36:1063–8.CrossRefPubMedGoogle Scholar
  40. Tash JS, Means AR. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982;26:745–63.CrossRefPubMedGoogle Scholar
  41. Tash JS, Means AR. Cyclic adenosine 3′5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod. 1983;28:75–104.CrossRefPubMedGoogle Scholar
  42. Van Blerkom J, Davis P. Evolution of the sperm aster microinjection of isolated human sperm centrosomes into meiotically mature human oocytes. Hum Reprod. 1995;10: 2179–82. Virtanen I, Bradley RA, Paasivuo R, Lehto VP. Distinct cytoskeletal domains revealed in sperm cells. J Cell Biol. 1984;99:1983–91.Google Scholar
  43. Villaroya S, Scholler R. Regional heterogeneity of human spermatozoa detected with monoclonal antibodies. J Reprod Fertil. 1986;76:435–47.CrossRefGoogle Scholar
  44. Virtanen I, Bradley RA, Paasivuo R, Lehto V-P. Distinct cytoskeletal domains revealed in sperm cells. J Cell Biol. 1984;99:1983–91.CrossRefGoogle Scholar
  45. Yanagimachi R, Noda YD, Fujimoto M, Nicholson G. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972;135:497–520.CrossRefPubMedGoogle Scholar
  46. Zaneveld LJD, Polakowski KL. Collection and physical examination of the ejaculate. In: Hafez ESE, editor. Techniques of human andrology. Amsterdam: Elsevier-North Holland; 1977. p. 147–72.Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Academy of Clinical EmbryologistsBangaloreIndia
  2. 2.Medical GeneticsThe Tamil Nadu Dr. MGR Medical UniversityChennaiIndia
  3. 3.Garbba Rakshambigai Fertility CentreChennaiIndia

Personalised recommendations