Advertisement

Biohydrogen Production from Microalgae: An Enzyme Perspective

  • Ayse Kose
  • Suphi S. Oncel
Chapter

Abstract

Biological hydrogen production from microbial origins especially from microalgal species has been an attractive source for the world to compensate the extreme fuel consumption of civilized population. The attribution of biohydrogen production is thought to be effective on macroscale considering global energy market; however there exist lots of biochemical reactions in a single cell to produce hydrogen. From this point of view, the aim of this chapter is to highlight the enzymes responsible for biohydrogen production in microalgae and to discuss enzymatic reactions focusing on cell dynamics, metabolism, structure, function, and challenges regarding sustainable biohydrogen production.

Keywords

Hydrogen Production PSII Reaction Center Biohydrogen Production Microalgal Species Maturation Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams MWW (1990) The structure and mechanism of iron hydrogenases. Biochim Biophys Acta 1020:115–145CrossRefGoogle Scholar
  2. Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygangov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption in sulfur-deprived Chlamydomonas reinhardtii cells. BBA 1607:153–160Google Scholar
  3. Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15CrossRefGoogle Scholar
  4. Aparico PJ, Azuara MP, Antonio B, Fernandez VM (1985) Effect of light intensity and oxidized nitrogen sources on hydrogen production by Chlamydomonas reinhardtii. Plant Physiol 78:803–806CrossRefGoogle Scholar
  5. Apte SK, Prabhavathi N (1994) Reaaragements of nitrogen fixation (nif) genes in heterocystous cyanobacteria. Bioscience 19(5):579–602Google Scholar
  6. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13(5):610–616CrossRefGoogle Scholar
  7. Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R, Appel J (2010) Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One 5:13849CrossRefGoogle Scholar
  8. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271CrossRefGoogle Scholar
  9. Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, West Sussex, pp 339–358Google Scholar
  10. Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22(10/11):979–987CrossRefGoogle Scholar
  11. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Attal M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–70CrossRefGoogle Scholar
  12. Bergman B, Carpenter EJ (1991) Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J Phycol 27:158–165CrossRefGoogle Scholar
  13. Bishop NI, Gaffron H (1963) photoreduction at λ705 mμ in adapted algae. Biochem Biophys Res Commun 8:471–476CrossRefGoogle Scholar
  14. Blaby IK, Blaby Haas CE, Tourasse N, Hom EFY, Lopez D, Aksoy M, Grossman A et al (2014) The Chlamydomonas genome project: a decade on. Trends Biotechnol 19(10):672–680Google Scholar
  15. Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S (2013) Transcriptome analysis of the sulfate deficiency response in the marine microalgae Emiliania huxleyi. New Phytol 199:650–662CrossRefGoogle Scholar
  16. Borowitzka AM (2013) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  17. Bui ETN, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76(1–2):305–310CrossRefGoogle Scholar
  18. Cao X, Wu X, Ji C, Yao C, Chen Z, Li G, Xue S (2008) Comparative transcriptional study on the hydrogen evolution of marine microalga Tetraselmis subcordiformis. Biochim Biophys Acta 1777:410–416CrossRefGoogle Scholar
  19. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PJ (2011) The role of bidirectional hydrogenases in cyanobacteria. Bioresour Technol 102:8368–8377CrossRefGoogle Scholar
  20. Casalot L, Rousset M (2001) Maturation of [NiFe] hydrogenases. Trends Microbiol 9(5):228–237CrossRefGoogle Scholar
  21. Cavazza C, Martin L, Mondy S, Gaillard J, Rater P, Fontecilla-Camps JC (2008) The possible role of an [FeFe]-hydrogenase-like protein in the plant responses to changing atmospheric oxygen levels. J Inorg Biochem 102:1359–1365CrossRefGoogle Scholar
  22. Chen HC, Melis A (2004) Localization and function of SulP, a nuclear encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220(2):198–210CrossRefGoogle Scholar
  23. Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F (2010) Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 9:3854–3866CrossRefGoogle Scholar
  24. Chenevier P, Mugherli L, Darbe S, Darchy L, Dimanno S, Tran PD, Valentino F, Iannello M, Volbeda A, Cavazza C, Artero V (2013) Hydrogenase enzymes: application in biofuel cells and inspiration for the design of noble-metal free catalysts for H2 oxidation. R Chim 16:491–505CrossRefGoogle Scholar
  25. Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas, photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640CrossRefGoogle Scholar
  26. Corr MJ, Murphy JA (2011) Evolution in the understanding of [Fe]-hydrogenase. Chem Soc Rev 40:2279–2292CrossRefGoogle Scholar
  27. Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol gel. Int J Hydrog Energy 34:204–215CrossRefGoogle Scholar
  28. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii, impacts on biological H2 production. J Biotechnol 131(1):27–33CrossRefGoogle Scholar
  29. Dos Santos PC, Igarashi RY, Lee HI, Hoffman BM, Seefeldt LC, Dean DR (2005) Substrate interactions with the nitrogenase active site. Acc Chem Res 38:208–214CrossRefGoogle Scholar
  30. Faraloni C, Torzillo G (2010) Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii QB binding D1 protein mutants under sulfur starvation, changes in chlorophyll fluorescence and pigment composition. J Phycol 46:788–799CrossRefGoogle Scholar
  31. Fedorov AS, Kosourov S, Ghirardi MI, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 121:403–412CrossRefGoogle Scholar
  32. Finazzi G, Furia A, Barbagallo RM, Forti G (1999) State transitions, cyclic and linear transport and photophorylation in Chlamydomonas reinhardtii. BBA 1413:117–129Google Scholar
  33. Florence M, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486CrossRefGoogle Scholar
  34. Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132CrossRefGoogle Scholar
  35. Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758CrossRefGoogle Scholar
  36. Friedrich B, Buhrke T, Burgdorf T, Lenz O (2005) A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem Soc Trans 33:97–101CrossRefGoogle Scholar
  37. Gaffron H (1944) Photosynthesis photoreduction and dark reduction of carbon dioxide in certain algae. Biol Rev Camb Phil Soc 19:1–20CrossRefGoogle Scholar
  38. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  39. Ghirardi M, Mohanty P (2010) Oxygenic hydrogen production- current status of the technology. Curr Sci India 98:499–507Google Scholar
  40. Ghirardi ML, Togasaki R, Seibert M (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotechnol 63–65:141–151CrossRefGoogle Scholar
  41. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae, a green source of renewable H2. TIBTECH 18:506–511CrossRefGoogle Scholar
  42. Ghirardi ML, Cohen J, King P, Schulten K, Kim K, Seibert M (2006) [FeFe]-hydrogenases and photobiological hydrogen production. SPIE 6340:U257–U262Google Scholar
  43. Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37:16951–16961CrossRefGoogle Scholar
  44. Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardtii: III. Photoassimilation of acetate. Plant Physiol 82:160–166CrossRefGoogle Scholar
  45. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Biotechnol 17:489–495CrossRefGoogle Scholar
  46. Ginovska-Pangovska B, Ho MH, Linehan JC, Cheng Y, Dupuis M, Raugei S, Shaw W (2014) Molecular dynamics study of the proposed proton transfer pathways in [FeFe] hydrogenase. Biochim Biophys Acta 1873:131–138CrossRefGoogle Scholar
  47. Girbal L, von Abendroth G, Winkler M, Benton PMC, Meynial-Salles I, Croux C et al (2005) Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environ Microbiol 71:2777–2781CrossRefGoogle Scholar
  48. Godaux D, Emonds-Alta B, Berne N, Ghysels B, Alric J, Remacle C, Cardol P (2013) A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield. Int J Hydrog Energy 38:1826–1836CrossRefGoogle Scholar
  49. Godman JE, Molnar A, Baulcombe DC, Bakl J (2010) RNA silencing of hydrogenase-like genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. BioChem J 431:345–351CrossRefGoogle Scholar
  50. Gomes de Oliviera Dal’Molin C, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(4):5CrossRefGoogle Scholar
  51. Greenbaum E (1982) Photosynthetic hydrogen and oxygen production: kinetic studies. Science 196:879–880CrossRefGoogle Scholar
  52. Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655CrossRefGoogle Scholar
  53. Greening C, Cook GM (2014) Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 18:30–38CrossRefGoogle Scholar
  54. Grossman AR (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224CrossRefGoogle Scholar
  55. Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410–427CrossRefGoogle Scholar
  56. Guaernieri MT, Pienkos PT (2013) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res. doi: 10.1007/s11120-014-9989-4 Google Scholar
  57. Guan Y, Deng M, Yu X, Zhang W (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73CrossRefGoogle Scholar
  58. Gugger MF, Hoffmann L (2004) Polyphyly of the true branching cyanobacterial (stigonematales). Int J Syst Evol Microsc 54:349–357CrossRefGoogle Scholar
  59. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898CrossRefGoogle Scholar
  60. Hallenbeck PC (2011) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies at advanced biofuel production. Springer US, Boston, pp 15–28Google Scholar
  61. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9Google Scholar
  62. Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA (2008) [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical. Biofuels Cell J Am Chem Soc 130:2015–2022CrossRefGoogle Scholar
  63. Happe T, Hemsheimer A (2011) Metalloprotein mimics –old tools in a new light. Trends Biotechnol 32(4):170–176CrossRefGoogle Scholar
  64. Happe T, Kaminski A (2002) Differential regulation of the Fe hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032CrossRefGoogle Scholar
  65. Happe T, Naber JD (2003) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481CrossRefGoogle Scholar
  66. Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774CrossRefGoogle Scholar
  67. Healey FP (1970) Hydrogen evolution by microalgae. Planta (Berl) 91:220–226CrossRefGoogle Scholar
  68. Heinekey MD (2009) Hydrogenase enzymes: recent structural studies and active site models. J Organomet Chem 694:2671–2680CrossRefGoogle Scholar
  69. Hemaiswarya S, Raja R, Ravikumar R, Carvalho IS (2013) Mechanism of Action of Probiotics. Braz Arch Biol Technol 56:113–119Google Scholar
  70. Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1807:919–926CrossRefGoogle Scholar
  71. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407CrossRefGoogle Scholar
  72. Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC (2013) Nitrogenase: a draft mechanism Acc. Chem Res 46(2):587–595CrossRefGoogle Scholar
  73. Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I (2012) NAD(H)-coupled hydrogen cycling – structure–function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 586:545–556CrossRefGoogle Scholar
  74. Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases-ancient enzymes in modern eukaryotes. Trends Biotechnol 27(3):148–153Google Scholar
  75. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982CrossRefGoogle Scholar
  76. Hu Y, Ribbe MW (2013) Nitrogenase assembly. Biochim Biophys Acta 1827:1112–1122CrossRefGoogle Scholar
  77. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114CrossRefGoogle Scholar
  78. Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SPJ, Armstrong FA (2003) Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active an inactive states of Allochromatium vinosum [NiFe] hydrogenase. J Am Chem Soc 125:8505–8514CrossRefGoogle Scholar
  79. Kallas T, Rebitre MC, Rippka R, Tandaeu de Marsa N (1983) The structural nif genes of the cyanobacterial Gloeothece sp. and Calothrix sp. share homology with those of Anabaena sp., but the Gloeothece genes have a different arrangement. J Bacteriol 155:427–431Google Scholar
  80. Kalyanasundaram K, Graetzel M (2010) Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Curr Opin Biotechnol 21:298–310CrossRefGoogle Scholar
  81. Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta 1777:410–416CrossRefGoogle Scholar
  82. Kessler E (1962) Hydrogenase und H2 Stoffwechsel bei algen vortr Gesamptgebiet. Bot NF 1:62–101Google Scholar
  83. Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 456–473Google Scholar
  84. Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271CrossRefGoogle Scholar
  85. Kim DH, Kim MS (2011) Hydrogenases for biohydrogen production. Bioresour Technol 102:8423–8431CrossRefGoogle Scholar
  86. Kima JP, Kang CD, Park TY, Kim MS, Sim SJ (2006) Enhanced hydrogen production by controlling light intensity in sulphur deprived Chlamydomonas reinhardtii culture. Int J Hydrog Energy 31:1585–1590CrossRefGoogle Scholar
  87. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172CrossRefGoogle Scholar
  88. Kojima E, Lin B (2004) Effect of partial shading on photoproduction of hydrogen by Chlorella. J Biosci Bioeng 97:317–321CrossRefGoogle Scholar
  89. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58CrossRefGoogle Scholar
  90. Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787CrossRefGoogle Scholar
  91. Kosourov SN, Batyrova KA, Petushkova EP, Tsygankov AA, Maria LG, Seibert M (2012) Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy 37:8850–8858CrossRefGoogle Scholar
  92. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177CrossRefGoogle Scholar
  93. Kufryk G (2013) Advances in utilizing cyanobacteria for hydrogen production. Adv Microbiol 3:60–68CrossRefGoogle Scholar
  94. Kützing FT (1849) Species algarum. FA Brockhaus, LeipzigGoogle Scholar
  95. Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M (2014) Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem Sci 5:1187–1203CrossRefGoogle Scholar
  96. Lamle SE, Halliwell LM, Armstrong FA, Albracht SP (2003) The electrochemical interconversions between the active and inactive states of a [NiFe]-hydrogenase; implications for the development of a bio-fuel cell. J Inorg Biochem 96:174CrossRefGoogle Scholar
  97. Laurinavichene T, Tolstygina I, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotechnol 114:143–151CrossRefGoogle Scholar
  98. Lee HS, Vermaas WFJ, Rittman BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28(5):262–271CrossRefGoogle Scholar
  99. Leite GB, Hallenbeck PC (2014) Engineered cyanobacteria: research and application in bioenergy. In: Gupta VK, Kubicek CP, Saddler J, Xu F, Tuohy MG (eds) Bioenergy research: advances and applications. Elsevier, Oxford. doi: 10.1016/B978-0-444-59561-4.00022-X
  100. Leon-Banares R, Gonza D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52CrossRefGoogle Scholar
  101. Lindahl PA (2012) Metal–metal bonds in biology. J Inorg Chem 106:172–178Google Scholar
  102. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wild type Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy 27:1271–1281CrossRefGoogle Scholar
  103. Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M (2011) Algal functional annotation tool: a web based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinforma 12:282CrossRefGoogle Scholar
  104. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148CrossRefGoogle Scholar
  105. Ludwig M, Schulz-Friedrich R, Appel J (2006) Occurrence of hydrogenases in cyanobacterial and anoxygenic photosynthetic bacteria: implications for phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63:758–768CrossRefGoogle Scholar
  106. Marr AC, Spencer DJE, Schroder M (2001) Structural mimics for the active site of [NiFe] hydrogenase. Coord Chem Rev 219–221:1055–1074CrossRefGoogle Scholar
  107. Martens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348CrossRefGoogle Scholar
  108. Masojidek J, Torzillo G, Koblizek M (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 21–36CrossRefGoogle Scholar
  109. Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34:7404–7416CrossRefGoogle Scholar
  110. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. Curr Opin Biotechnol 284:23415–23425Google Scholar
  111. May P, Christian JO, Kempa S, Walther D (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10:209CrossRefGoogle Scholar
  112. Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832CrossRefGoogle Scholar
  113. McGlynn SE, Shepard EM, Winslow MA, Naumov AV, Duschene KS, Posewitz MC, Broderick WE (2008) FEMS Lett 582:2183–2187Google Scholar
  114. Mckinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251CrossRefGoogle Scholar
  115. Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228CrossRefGoogle Scholar
  116. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086CrossRefGoogle Scholar
  117. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antenna to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  118. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748CrossRefGoogle Scholar
  119. Melis A, Zhang L, Forestier M, Ghirardi M, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135CrossRefGoogle Scholar
  120. Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRefGoogle Scholar
  121. Meuser JE, Boyd ES, Ananyey G, Karns D, Radakovits R, Narayana Murthy UM, GHirardi ML, Dismukes C, Peters JW, Posewitz MC (2011) Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta 234:829–843CrossRefGoogle Scholar
  122. Mevarech M, Rice D, Haselkorn R (1980) Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci 77(11):6476–6480CrossRefGoogle Scholar
  123. Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(163):170Google Scholar
  124. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084CrossRefGoogle Scholar
  125. Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70:89–101CrossRefGoogle Scholar
  126. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JB (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052CrossRefGoogle Scholar
  127. Mulligan ME, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterial Anabaena species strain PCC7120. J Biol Chem 264(32):19200–19207Google Scholar
  128. Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical PQ reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332CrossRefGoogle Scholar
  129. Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer O, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(11):1965–1979CrossRefGoogle Scholar
  130. Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266CrossRefGoogle Scholar
  131. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23CrossRefGoogle Scholar
  132. Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. TIBS 25:138–153Google Scholar
  133. Nicolet Y, de Lacey AL, Vernede X, Fernandez VM, Hatchikian CE, Fontecilla-Camps JE (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only-hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:596–1601CrossRefGoogle Scholar
  134. Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) Fe only hydrogenases: structure, function and evolution. J Inorg Biochem 91:1–8CrossRefGoogle Scholar
  135. Nicolet Y, Fontecilla-Camps JC, Fontecava M (2010) Maturation of [FeFe]-hydrogenases: structures and mechanisms. Int J Hydrog Energy 35:10750–10760CrossRefGoogle Scholar
  136. Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367CrossRefGoogle Scholar
  137. Okhi Y (2014) Synthetic analogous of the active sites of nitrogenase and [NiFe] hydrogenase. Bull Chem Soc Jpn 87(1):119CrossRefGoogle Scholar
  138. Oliveira Dal’Molin CG, Quek L-E, Palfreyman R, Nielsen L (2011) AlgaGEM–a genomescale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12:S5Google Scholar
  139. Oncel S (2013) Microalgae for a macro energy world. Renew Syst Energy Rev 26:241–264CrossRefGoogle Scholar
  140. Oncel SS (2015) Biohydrogen from microalgae, uniting energy, life, and green future. In: Kim SK (ed) Handbook of marine microalgae. Biotechnology Advances Academic Press, pp 159–196Google Scholar
  141. Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270CrossRefGoogle Scholar
  142. Oncel S, Sabankay M (2012) Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour Technol 121:228–234Google Scholar
  143. Oncel S, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Vardar Sukan F (2014) Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: the effects of light intensity and illumination patterns. Biochem Eng J 92:47–52CrossRefGoogle Scholar
  144. Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10:101–108CrossRefGoogle Scholar
  145. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858CrossRefGoogle Scholar
  146. Peters JW, Szilagyi RK, Naumov A, Douglas T (2006) A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett 580:363–367CrossRefGoogle Scholar
  147. Pierik AJ, Hulstein M, Hagen WR, Albracht SPJ (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578CrossRefGoogle Scholar
  148. Polle JEW, Kanakagiri S, Jin ES, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264CrossRefGoogle Scholar
  149. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720CrossRefGoogle Scholar
  150. Postgate JR, Eady RR (1988) The evolution of biological nitrogen fixation. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 31–40Google Scholar
  151. Prince RC, Kheshgi HD (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31CrossRefGoogle Scholar
  152. Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566CrossRefGoogle Scholar
  153. Rice D, Mazur BJ, Haselkorn R (1982) Isolation and physical mapping of nitrogen fixation genes from the cyanobacterium Anabaena 7120. J Biol Chem 257(21):13157–13163Google Scholar
  154. Rismandi Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148CrossRefGoogle Scholar
  155. Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Curr Opin Microbiol 12(3):285–291CrossRefGoogle Scholar
  156. Roseboom W, de Lacey AL, Fernandez WM, Hatchikian CE, Albracht SPJ (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11:102–118CrossRefGoogle Scholar
  157. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436CrossRefGoogle Scholar
  158. Rubach JK, Brazzolotto X, Gaillard J, Fontecave M (2005) Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett 579:5055–5060CrossRefGoogle Scholar
  159. Rubio LM, Ludden PW (2005) Maturation of nitrogenase: a biochemical puzzle. J Bacteriol 187(2):405–414CrossRefGoogle Scholar
  160. Rupprecht J (2009) From system biology to fuel-Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142:10–20CrossRefGoogle Scholar
  161. Sakurai H, Masukawa H, Kitashima M, Inoue K (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C 17:1–25CrossRefGoogle Scholar
  162. Saleem M, Chakrabarti M, Raman AAA, Hasan DB, Dauad WMAW, Mustafa A (2012) Hydrogen production by Chlamydomonas reinhardtii in a two-stage process with and without illumination at alkaline pH. Int J Hydrog Energy 37:4930–4934CrossRefGoogle Scholar
  163. Schawarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460(13). doi:  10.1038/nature08302
  164. Schmitter JM, Jacquot JP, de Lamotte-Guery F, Beauvallet C, Dutka S, Gadal P et al (1998) Purification, properties and complete amino acid sequence of the ferredoxin from a green alga, Chlamydomonas reinhardtii. Eur J Biochem 172:405–412CrossRefGoogle Scholar
  165. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619CrossRefGoogle Scholar
  166. Seefeldt LC, Hoffman BM, Dean DR (2012) Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol 16:19–25CrossRefGoogle Scholar
  167. Shafaat HS, Rüdriger O, Ogata H, Lubitz W (2013) [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Biochim Biophys Acta 1827:986–1002CrossRefGoogle Scholar
  168. Shepard EM, Boyd ES, Broderick JB, Peters JW (2011) Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol 15:319–327CrossRefGoogle Scholar
  169. Skjanes K, Pinto FL, Lindblad P (2010) Evidence for transcription of three genes with characteristics of hydrogenases in the green alga Chlamydomonas noctigama. Int J Hydrog Energy 35:1074–1088CrossRefGoogle Scholar
  170. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  171. Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacterial. Bioresour Technol 102:8589–8604CrossRefGoogle Scholar
  172. Stephenson M, Stickland SH (1931) Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of hydrogenases. Biochem J 25:205–214CrossRefGoogle Scholar
  173. Sun L, Akermark B, Ott S (2005) Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord Chem Rev 249:1653–1663CrossRefGoogle Scholar
  174. Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104:17548–17553CrossRefGoogle Scholar
  175. Switzer L (1981) Spirulina: the whole food revolution. Proteus Corporation Banta Books, TorontoGoogle Scholar
  176. Sybirna K, Ezanno P, Baffert C, Leger C, Bottin H (2013) Arginine171 of Chlamydomonas reinhardtii [FeeFe] hydrogenase HydA1 plays a crucial role in electron transfer to its catalytic center. Int J Hydrog Energy 38:2998–3002CrossRefGoogle Scholar
  177. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20CrossRefGoogle Scholar
  178. Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenase: diversity, regulation and applications. FEMS Microbiol Rev 31(6):692–720CrossRefGoogle Scholar
  179. Taylor B, Lee C, Bunt J (1973) Nitrogen-fixation associated with the marine blue-green alga, Trichodesmium, as measured by the acetylene-reduction technique. Arch Mikrobiol 88:205–212CrossRefGoogle Scholar
  180. Thompson AW, Zehr JP (2013) Cellular interactions: lessons from the nitrogen fixing cyanobacteria. J Phycol 49:1024–1035CrossRefGoogle Scholar
  181. Torzillo G, Seibert M (2013) Hydrogen production by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 417–444CrossRefGoogle Scholar
  182. Torzillo G, Scoma A, Faraloni C, Gianelli L (2014) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol:1–12. doi:  10.3109/07388551.2014.900734
  183. Tóth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat-treated barley leaves, the role of internal alternative electron donors to photosystem II. BBA Bioenerg 1767:295–305CrossRefGoogle Scholar
  184. Tsygankov AA (2007) Nitrogen fixing cyanobacteria: a review. Appl Biochem Microbiol 43(3):250–259CrossRefGoogle Scholar
  185. Tsygankov A, Kosourov S, Seibert M, Ghirardi ML (2002) Hydrogen photoproduction under continuous illumination by sulfur deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 27:1239–1244CrossRefGoogle Scholar
  186. Vignais PN, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501CrossRefGoogle Scholar
  187. Volbeda SA, Fontecilla-Camps JC (2005) Structure–function relationships of nickel–iron sites in hydrogenase and a comparison with the active sites of other nickel–iron enzymes. Coord Chem Rev 249:1609–1619CrossRefGoogle Scholar
  188. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Cystal structure of [NiFe] hydrogenase. Nature 373:580–587CrossRefGoogle Scholar
  189. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093CrossRefGoogle Scholar
  190. Weckwerth W (2011) Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 875:284–305CrossRefGoogle Scholar
  191. Wilmotte A, Herdman M (2001) In: Boone DR, Castenholz RW (eds) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences, Bergey’s manual of systematic bacteriology, 2nd edn. Springer-Verlag, New York, pp 487–493Google Scholar
  192. Winkler M, Heil B, Happe T (2002a) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334CrossRefGoogle Scholar
  193. Winkler M, Hemscheimer A, Gotor C, Melis A, Happe T (2002b) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27(11–12):1431–1439CrossRefGoogle Scholar
  194. Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284(52):36620–36627CrossRefGoogle Scholar
  195. Winkler M, Esselborn J, Happe T (2013) Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Bioch Biophys Acta 1827:974–985Google Scholar
  196. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139CrossRefGoogle Scholar
  197. Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW (2012) Optimized expression and purification for high-activity preparations of algal [FeFe]-hydrogenase. PLoS One 7:35886CrossRefGoogle Scholar
  198. Young JPW (1992) Phylogenetic classification of nitrogenfixing organisms. In: Stacey G, Evans HJ, Burris RH (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 43–86Google Scholar
  199. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 7:539–554CrossRefGoogle Scholar
  200. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561CrossRefGoogle Scholar
  201. Zhang L, He M, Liu J (2014) The enhancement mechanism of hydrogen photoproduction in Chlorella protothecoides under nitrogen limitation and sulfur deprivation. Int J Hydrog Energy 39:8969–8976CrossRefGoogle Scholar
  202. Zhao Y, Bian SM, Zhou HN, Huang JF (2006) Diversity of nitrogenase systems in diazotrophs. Plant Biol 48(7):745–755Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Department of BioengineeringEge UniversityIzmirTurkey

Personalised recommendations