Sustainability of Biohydrogen Production Using Engineered Algae as a Source

  • Khorcheska Batyrova
  • Patrick C. HallenbeckEmail author


The increased scarcity of fossil fuels and concerns over climate change have focused attention on alternative energy and the production of renewable fuels. Hydrogen is a promising substitute as an energy carrier to the fossil fuels, since it has high conversion efficiency and high energy content and is environmentally friendly. Nowadays, hydrogen is mostly produced via chemical reformation of fossil fuels; therefore, the biological production of hydrogen is seen as very attractive. Biological hydrogen production represents a renewable means of generating this biofuel and can be performed by a wide range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Different strains of photoautotrophic green algae have the remarkable ability to reduce protons to H2 using light energy. Photobiological hydrogen production by green algae is particularly attractive due to the fact that water and solar energy as main inputs for the process are plentiful on our planet. In this chapter we are focusing on the recent developments in photobiological H2 production by green algae with highlights on the barriers that prevent H2 production and how those limitations can be addressed, through genetic and metabolic engineering.


Green Alga Hydrogen Production PSII Activity Sulfur Deprivation Biological Hydrogen Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelaziz AEM, Leite GB, Hallenbeck PC (2013a) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ Technol 34(13–14):1783–1805CrossRefGoogle Scholar
  2. Abdelaziz AEM, Leite GB, Hallenbeck PC (2013b) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34(13–14):1807–1836CrossRefGoogle Scholar
  3. Antal T, Krendeleva T, Laurinavichene T, Makarova V, Ghirardi ML, Rubin A, Tsygankov A, Seibert M (2003) The dependence of algal H2 production on photosystem II and O 2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160CrossRefGoogle Scholar
  4. Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB (2009) Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy 34:9087–9094CrossRefGoogle Scholar
  5. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918CrossRefGoogle Scholar
  6. Ball SG, Dirick L, Decq A, Martiat JC, Matagne R (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66:1–9CrossRefGoogle Scholar
  7. Batyrova K, Tsygankov A, Kosourov S (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839CrossRefGoogle Scholar
  8. Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716CrossRefGoogle Scholar
  9. Beckmann J et al (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77CrossRefGoogle Scholar
  10. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271CrossRefGoogle Scholar
  11. Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103CrossRefGoogle Scholar
  12. Berberoglu H, Pilon L, Melis A (2008) Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CWþ. Int J Hydrog Energy 33:6467–6483CrossRefGoogle Scholar
  13. Bock A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71CrossRefGoogle Scholar
  14. Boichenko V, Arkhipov V, Litvin F (1983) Simultaneous measurements of fluorescence induction and hydrogen evolution of Chlorella under anaerobic conditions. Biophysics (Russ) 28:976–979Google Scholar
  15. Boichenko V, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: Archer MD, Barber J (eds) Photoconversion of solar energy, molecular to global photosynthesis, 2nd edn. Imperial College Press, London, pp 397–452CrossRefGoogle Scholar
  16. Boicheo VA, Hoffmann P (1994) Photosynthetic hydrogen production in prokaryotes and eukaryotes: occurrence, mechanism, and functions. Photosynthetica 30:527–552Google Scholar
  17. Boyd ES, Spear JR, Peters JW (2009) [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Appl Environ Microbiol 75:4620–4623CrossRefGoogle Scholar
  18. Boyer M, Stapleton J, Kuchenreuther J et al (2007) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99:59–67CrossRefGoogle Scholar
  19. Brand JJ, Wright JN, Lien S (1989) Hydrogen production by eukaryotic algae. Biotechnol Bioeng 33:1482–1488CrossRefGoogle Scholar
  20. Brooks A (1985) Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221e37Google Scholar
  21. Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503CrossRefGoogle Scholar
  22. Chang C, King P, Ghirardi M, Kim K (2007) Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Biophys J 93(9):3034–3045CrossRefGoogle Scholar
  23. Chen ZX, Chastain CJ, Al-Abed SR, Chollet R, Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. Proc Natl Acad Sci U S A 85:4696–4699CrossRefGoogle Scholar
  24. Chen H-C, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296CrossRefGoogle Scholar
  25. Chien L, Kuo T, Liu B, Lin H, Feng T, Huang C (2012) Solar-tobioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy 37(23):17738–17748CrossRefGoogle Scholar
  26. Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: PSII Solar-dependent and independent pathways differ in their requirement on starch metabolism. Plant Physiol 151:613–640CrossRefGoogle Scholar
  27. Chochois V, Constans L, Dauville ED, Beyly A, Soliveres M, Ball S, Peltier G, Cournac L (2010) Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 35:10731–10740CrossRefGoogle Scholar
  28. Cinco R, Macinnis J, Greenbaum E (1993) The role of carbon-dioxide in light-activated hydrogen-production by Chlamydomonas reinhardtii. Photosynth Res 38:27–33CrossRefGoogle Scholar
  29. Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262CrossRefGoogle Scholar
  30. Davies J, Yildiz F, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2215Google Scholar
  31. Davies JP, Yildiz FH, Grossman AR (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11:1179–1190CrossRefGoogle Scholar
  32. Davies KM, Skamnaki V, Johnson LN, Venien-Bryan C (2006) Structural and functional studies of the response regulator HupR. J Mol Biol 359:276–288CrossRefGoogle Scholar
  33. Depege N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575CrossRefGoogle Scholar
  34. Dietz KJ, Heilos L (1990) Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition. Plant Physiol 93:1219e25Google Scholar
  35. Doebbe A, Rupprecht J, Beckmann J, Mussgnug J, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C-reinhardtii impacts on biological H2 production. J Biotechnol 131(1):27–33CrossRefGoogle Scholar
  36. Dubini A, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 2:1–13Google Scholar
  37. Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11(11):543–549CrossRefGoogle Scholar
  38. Esquível MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29:595–600CrossRefGoogle Scholar
  39. Fedorov A, Kosourov S, Ghirardi M, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Appl Biochem Biotechnol 121:403–412CrossRefGoogle Scholar
  40. Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758CrossRefGoogle Scholar
  41. Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac LB (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205CrossRefGoogle Scholar
  42. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  43. Genkov T, Du Y-C, Spreitzer RJ (2006) Small-subunit cysteine-65 substitutions can suppress or induce alterations in the large-subunit catalytic efficiency and holoenzyme thermal stability of ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 451:167–174CrossRefGoogle Scholar
  44. Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii. 1. analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218CrossRefGoogle Scholar
  45. Ghirardi ML, Mohanty P (2010) Oxygenic hydrogen photoproduction – current status of the technology. Curr Sci 98:499–507Google Scholar
  46. Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal H(2)-production. Appl Biochem Biotechnol 63–65:141–151CrossRefGoogle Scholar
  47. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511CrossRefGoogle Scholar
  48. Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 33:70–72CrossRefGoogle Scholar
  49. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Physiol 58:71–91Google Scholar
  50. Godman JE, Molnár A, Baulcombe DC, Balk J (2010) RNA silencing of hydrogenase (−like) genes and investigation of their physiological roles in the green alga chlamydomonas reinhardtii. Biochem J 431:345–351CrossRefGoogle Scholar
  51. Gonzalez-Ballester D, Pollock SV, Pootakham W, Grossman AR (2008) The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol 147:216–227CrossRefGoogle Scholar
  52. Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084CrossRefGoogle Scholar
  53. Govindjee (2008) In: Govindjee (ed) Advances in photosynthesis and respiration, vol 126. Springer, DordrechtGoogle Scholar
  54. Graves DA, Spradlin GM, Greenbaum E (1990) Effect of oxygen on photoautotrophic and heterotrophic growth of Chlamydomonas reinhardtii in an anoxic atmosphere. Photochem Photobiol 52(3):585–590CrossRefGoogle Scholar
  55. Greenbaum E (1980) Simultaneous photoproduction of hydrogen and oxygen by photosynthesis. Biotechnol Bioeng Symp 10:1–13Google Scholar
  56. Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655CrossRefGoogle Scholar
  57. Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-Harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26:1598–1611CrossRefGoogle Scholar
  58. Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302CrossRefGoogle Scholar
  59. Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York, pp 15–28CrossRefGoogle Scholar
  60. Hallenbeck P, Abo-Hashesh M, Ghoshet D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9CrossRefGoogle Scholar
  61. Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032CrossRefGoogle Scholar
  62. Harris EH, Witman GB (2008) The Chlamydomonas sourcebook, 2nd edn. Elsevier, BostonGoogle Scholar
  63. Hase E, Morimura Y, Mihara S, Tamiya H (1958) The role of sulfur in the cell division of Chlorella. Arch Mikrobiol 31:87–95CrossRefGoogle Scholar
  64. He M, Li L, Zhang L, Liu J (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. Int J Hydrog Energy 37:16903–16915CrossRefGoogle Scholar
  65. Healey FP (1970) The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45:153–159CrossRefGoogle Scholar
  66. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008a) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407. doi: 10.1007/s00425-007-0626-8 CrossRefGoogle Scholar
  67. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008b) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407CrossRefGoogle Scholar
  68. Hwang J-H, Kim H-C, Choi J-A, Abou-Shanab R, Dempsey BA, Regan JM, Kim JR, Song H, Nam I-H, Kim S-N (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5:60–67Google Scholar
  69. Jacob J, Lawlor DW (1993) In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate deficient sunflower and maize leaves. Plant Cell Environ 16:785e95CrossRefGoogle Scholar
  70. Kosourov S, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58CrossRefGoogle Scholar
  71. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740CrossRefGoogle Scholar
  72. Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155CrossRefGoogle Scholar
  73. Kosourov S, Ghirardi M, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36(3):2044–2048CrossRefGoogle Scholar
  74. Kosourov S, Batyrova K, Petushkova K, Tsygankov A, Ghirardi ML, Seibert M (2012) Maximizing the hydrogen photoproduction yields in chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy 37:8850–8858CrossRefGoogle Scholar
  75. Kreuzberg K, Klöck G, Grobheiser D (1987) Subcellular distribution of pyruvate-degrading enzymes in Chlamydomonas reinhardtii studied by an improved protoplast fractionation procedure. Physiol Plant 69:481–488CrossRefGoogle Scholar
  76. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H 2 production in engineered green algal cells. J Biol Chem 280:34170–34177CrossRefGoogle Scholar
  77. Laurinavichene TL, Tolstygina I, Galiulina RR, Ghirardi M, Seibert M, Tsygankov AA (2002) Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int J Hydrog Energy 27:1245–1249CrossRefGoogle Scholar
  78. Laurinavichene T, Fedorov A, Ghirardi M, Seibert M, Tsygankov A (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrobiol Energy 31:659–667CrossRefGoogle Scholar
  79. Lee JW (2013) Designer transgenic algae for photobiological production of hydrogen from water. In: Lee JW (ed) Advanced biofuels and bioproducts, I, Chapter 20. Springer, New York, pp 371–404CrossRefGoogle Scholar
  80. Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141CrossRefGoogle Scholar
  81. Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46CrossRefGoogle Scholar
  82. Liebgott P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps J, Guigliarelli B, Bertrand P, Rousset M, Leger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6(1):63–70CrossRefGoogle Scholar
  83. Lin H-D, Liu B-H, Kuo T-T, Tsai H-C, Feng T-Y, Huang C-C, Chien L-F (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H 2 in the green alga Chlorella sp. DT. Bioresour Technol 143:154–162CrossRefGoogle Scholar
  84. Long H, King P, Ghirardi M, Kim K (2009) Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. J Phys Chem A 113(16):4060–4067CrossRefGoogle Scholar
  85. Malnoe A, Wang F, Girard-Bascou J, Wollman F-A, de Vitry C (2014) Thylakoid FTSH protease contributes to photosystem ii and cytochrome b(6)f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26:373–390CrossRefGoogle Scholar
  86. Marin-Navarro J, Esquivel M, Moreno J (2010) Hydrogen production by Chlamydomonas reinhardtii revisited: rubisco as a biotechnological target. World J Microbiol Biotechnol 26:1785–1793CrossRefGoogle Scholar
  87. Markov SA, Eivazova ER, Greenwood J (2006) Photostimulation of H2 production in the green alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system. Int J Hydrog Energy 31:1314–1317CrossRefGoogle Scholar
  88. Maroti G, Tong Y, Yooseph S, Baden-Tillson H, Smith HO, Kovacs KL, Frazier M, Venter JC, Xu Q (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microbiol 75:5821–5830CrossRefGoogle Scholar
  89. Matthew T, Zhou WX, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425CrossRefGoogle Scholar
  90. Melis A (2002) Green algal hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228CrossRefGoogle Scholar
  91. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748CrossRefGoogle Scholar
  92. Melis A, Happe T (2004) Trails of green alga hydrogen research: from Hans Gaffron to new frontiers. Photosynth Res 80:401–409CrossRefGoogle Scholar
  93. Melis A, Mullineaux CW, Allen JF (1989) Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light: evidence from quantum yield measurement and fluorescence spec- troscopy of cyanobacterial cells. Z Naturforsch Teil C 44:109–118Google Scholar
  94. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefGoogle Scholar
  95. Melis A, Seibert M, Ghirardi ML (2007) Hydrogen fuel production by transgenic microalgae. Adv Exp Med Biol 616:108–121Google Scholar
  96. Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30CrossRefGoogle Scholar
  97. Meuser JE, D’adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H(2) production. Biochem Biophys Res Commun 417:704–709CrossRefGoogle Scholar
  98. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084CrossRefGoogle Scholar
  99. Mulder D, Boyd E, Sarma R, Lange R, Endrizzi J, Broderick J, Peters J (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465(7295):248–251CrossRefGoogle Scholar
  100. Müller M (2003) Energy metabolism. Part 1: anaerobic protozoa. In: Marr JJ, Nilsen TW, Komunieck R (eds) Molecular medical parasitology. Academic, Amsterdam, pp 125–139CrossRefGoogle Scholar
  101. Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332CrossRefGoogle Scholar
  102. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486CrossRefGoogle Scholar
  103. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814CrossRefGoogle Scholar
  104. Nagy LE, Meuser JE, Plummer S et al (2007) Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol Lett 29:421–430CrossRefGoogle Scholar
  105. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8:e61375CrossRefGoogle Scholar
  106. Oncel S, Sukan FV (2011) Effect of light intensity and the light: dark cycles on the long term hydrogen production by batch cultures. Biomass Bioenergy 35:1066–1074CrossRefGoogle Scholar
  107. Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745CrossRefGoogle Scholar
  108. Pinto T, Malcata F, Arrabaça J, Silva J, Spreitzer R, Esquível M (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643CrossRefGoogle Scholar
  109. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264CrossRefGoogle Scholar
  110. Randt C, Senger H (1985) Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem Photobiol 42:553–557CrossRefGoogle Scholar
  111. Ravenel J, Peltier G, Havaux M (1994) The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta 193:251–259CrossRefGoogle Scholar
  112. Ruhle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107CrossRefGoogle Scholar
  113. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B et al (2007) The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol 5:e77CrossRefGoogle Scholar
  114. Satagopan S, Spreitzer RJ (2004) Substitutions at the Asp-473 latch residue of Chlamydomonas ribulose bisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO2/O2 specificity. J Biol Chem 279:14240–14244CrossRefGoogle Scholar
  115. Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Physiol 58:71–91Google Scholar
  116. Seibert M, Flynn T, Benson D, Ghirardi M (1998) Development of selection and screening procedures for rapid identification of H2-producing algal mutants with increased O2 tolerance. In: Zaborsky OR (ed) Biohydrogen. Plenum, New York, pp 227–234Google Scholar
  117. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7CrossRefGoogle Scholar
  118. Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473CrossRefGoogle Scholar
  119. Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604CrossRefGoogle Scholar
  120. Stapleton J, Swartz J (2010) Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One 5(12):e15275CrossRefGoogle Scholar
  121. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106:17331–17336CrossRefGoogle Scholar
  122. Stuart TS, Gaffron H (1972) The mechanism of hydrogen photoproduction by several algae. Planta 106:101–112CrossRefGoogle Scholar
  123. Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104:17548–17553CrossRefGoogle Scholar
  124. Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:35996CrossRefGoogle Scholar
  125. Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34:4529–4536CrossRefGoogle Scholar
  126. Tsygankov AA (2012) Hydrogen production: light-driven processes – green algae. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New YorkGoogle Scholar
  127. Tsygankov A, Kosourov S, Seibert M, Ghirardi M (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 27:1239–1244CrossRefGoogle Scholar
  128. Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J (1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89:996–1000CrossRefGoogle Scholar
  129. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRefGoogle Scholar
  130. Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Solar Energy 24:3–45CrossRefGoogle Scholar
  131. Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627CrossRefGoogle Scholar
  132. Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102:2610–2616CrossRefGoogle Scholar
  133. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139CrossRefGoogle Scholar
  134. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci U S A 96:15336–15341CrossRefGoogle Scholar
  135. Xu F-Q, Ma W-M, Zhu X-G (2011) Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production. Int J Hydrog Energy 36:10648–10654CrossRefGoogle Scholar
  136. Yanyushin M (1982) Hydrogenase activation and hydrogen photoevolution in a synchronous culture of Chlamydomonas reinhardtii during anaerobic adaptation under light. Sov Plant Physiol 29:863–869Google Scholar
  137. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2 producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Département de Microbiologie, infectiologie et immunologieUniversité de MontréalMontréalCanada
  2. 2.Life Sciences Research Center, Department of BiologyUnited States Air Force AcademyColorado SpringsUSA

Personalised recommendations