Skip to main content

Challenges in the Design and Operation of an Efficient Photobioreactor for Microalgae Cultivation and Hydrogen Production

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

The major challenge in the production of biofuels from microalgae is the need to generate sufficient quantities of microalgal biomass and an environmentally friendly and cost-effective method for extraction of oil from the biomass. Biomass can be generated by cultivating microalgae in open ponds or closed photobioreactor systems. When using a photobioreactor system, it is possible to have better control over parameters such as temperature, pH, light intensity, dissolved oxygen and dissolved carbon dioxide. However, they consume more energy and are expensive to operate. Cultivation of microalgae in open ponds is cheaper, and it utilises less energy as compared to closed photobioreactors. But, it is not possible to control physical parameters like temperature and light intensity as they depend on the environmental conditions. Also, contamination from other predators, parasites and weeds needs to be addressed. Considering, the overall cost-effectiveness, it may be possible to cultivate microalgae in open ponds under semi-continuous systems. Direct production of hydrogen using photosynthetic microorganisms such as microalgae may also be considered since it can be energetically more favourable than cultivating, harvesting and processing the biomass for biofuel production. In such cases, degradation of the hydrogen produced by the hydrogenase enzyme present in the system needs to be managed. Considering future energy demands, the possibility of CO2 sequestration and bioenergy production from microalgae and the overall ease of cultivation, it may be possible to use semi-continuous cultivation in open ponds for generating microalgal biomass with better biomass yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacellar Mendes L, Vermelho A (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6(1):152. doi:10.1186/1754-6834-6-152

    Article  Google Scholar 

  • Barbosa MJ, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20(4):115–123. doi:10.1016/S1389-0344(03)00033-9

    Article  CAS  Google Scholar 

  • Bergmann P, Ripplinger P, Beyer L, Trosch W (2013) Disposable flat panel airlift photobioreactors. Chemie Ingenieur Technik 85(1–2):202–205. doi:10.1002/cite.201200132

    Article  CAS  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2012) Global, regional, and national fossil-fuel CO2 emissions. Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi:10.3334/CDIAC/00001_V2012

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technol 101(17):6768–6777. doi:10.1016/j.biortech.2010.03.103

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506. doi:10.1021/bp060065r

    Article  CAS  Google Scholar 

  • Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97(2):322–329. doi:10.1016/j.biortech.2005.02.037

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996a) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604. doi:10.1016/S0032-9592(96)00006-4

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996b) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19. doi:10.1007/BF02186216

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  CAS  Google Scholar 

  • Dormido R, Sanchez J, Duro N, Dormido-Canto S, Guinaldo M, Dormido S (2014) An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system. Sensors (Basel, Switzerland) 14(3):4466–4483. doi:10.3390/s140304466

    Article  CAS  Google Scholar 

  • Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. doi:10.2791/3339

  • Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105. doi:10.1016/j.biortech.2010.06.016

    Article  CAS  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335. doi:10.1038/nature11479

    Article  CAS  Google Scholar 

  • Gressler P, Bjerk T, Schneider R, Souza M, Lobo E, Zappe A, Corbellini VA, Moraes M (2014) Cultivation of Desmodesmus subspicatus in a tubular photobioreactor for bioremediation and microalgae oil production. Environ Technol 35(2):209–219. doi:10.1080/09593330.2013.822523

  • Guan J, Xiao Y, Song J, Miao J (2014) A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal. Front Earth Sci 8(1):142–149. doi:10.1007/s11707-013-0370-2

    Article  CAS  Google Scholar 

  • Ho SH, Kondo A, Hasunuma T, Chang JS (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol 143:163–171. doi:10.1016/j.biortech.2013.05.043

    Article  CAS  Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102(12):6687–6695. doi:10.1016/j.biortech.2011.03.098

    Article  CAS  Google Scholar 

  • Kaidi F, Rihani R, Ounnar A, Benhabyles L, Naceur MW (2012) Photobioreactor design for hydrogen production. Procedia Eng 33:492–498. doi:10.1016/j.proeng.2012.01.1229

    Article  CAS  Google Scholar 

  • Keffer JE, Kleinheinz GT (2002) Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J Industr Microbiol Biotechnol 29:275–280. doi:10.1038/sj.jim.7000313

  • Kroger M, Muller-Langer F (2012) Review on possible algal-biofuel production processes. Biofuels 3(3):333–349. doi:10.4155/bfs.12.14

    Article  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Tech 43:6475–6481. doi:10.1021/es900705j

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315. doi:10.1023/A:1017560006941

    Article  Google Scholar 

  • Lee K, Lee C-G (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioproc Eng 6:194–199. doi:10.1007/BF02932550

    Article  CAS  Google Scholar 

  • Lestari S, Maki-Arvela P, Beltramini J, Lu GQM, Murzin DY (2009) Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2:1109–1119. doi:10.1002/cssc.200900107

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(1):815–820. doi:10.1021/bp.070371k

    CAS  Google Scholar 

  • Li J, Stamato M, Velliou E, Jeffryes C, Agathos SN (2014) Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. J Appl Phycol 27(1):75–86. doi:10.1007/s10811-014-0335-1

    Article  Google Scholar 

  • Liu J, Huang J, Chen F (2011) Microalgae as feedstocks for biodiesel production. In: Biodiesel feedstocks and processing technologies. InTech, Rijeka, pp 133–160

    Google Scholar 

  • Lu J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466. doi:10.1039/c0ee00593b

    Article  CAS  Google Scholar 

  • Maness PC, Weaver PF (2002) Hydrogen production from a carbon-monoxide oxidation pathway in Rubrivivax gelatinosus. Int J Hydr Energy 27(11–12):1407–1411. doi:10.1016/S0360-3199(02)00107-6

  • Maness PC, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71(6):2870–2874. doi:10.1128/AEM.71.6.2870-2874.2005

    Article  CAS  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2013) Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111:872–879. doi:10.1016/j.fuel.2013.04.013

    Article  CAS  Google Scholar 

  • Markov SA (2012) Hydrogen production in bioreactors: current trends. Energy Procedia 29:394–400. doi:10.1016/j.egypro.2012.09.046

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  • Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotechnol 105–108:247–254. doi:10.1385/ABAB:105:1–3:247

  • Metz B, Davidson OR, Bosch PR, Dave LA (eds) (2007) Climate change 2007: mitigation of climate change contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, Retrieved from http://www.mnp.nl/ipcc/

    Google Scholar 

  • Miron AS, Garcia MCC, Camacho F, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023. doi:10.1016/S0141-0229(02)00229-6

  • Molina E, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131. doi:10.1016/S0168-1656(01)00353-4

    Article  CAS  Google Scholar 

  • Oron G, Shelef G, Levi A (1979) Growth of Spirulina maxima on cow-manure wastes. Biotechnol Bioeng 21:2169–2173. doi:10.1002/bit.260211203

    Article  CAS  Google Scholar 

  • Oswald WJ (1992) Microalgae and wastewater treatment. In: Borowitzka A, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol 142:64–69. doi:10.1016/j.jbiotec.2009.03.015

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. doi:10.1007/s002530100702

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. doi:10.1016/0167-7799(92)90282-Z

    Article  CAS  Google Scholar 

  • Richmond A (2003) Handbook of microalgal culture. In: Richmond A (ed) Biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford. doi:10.1002/9780470995280

    Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332. doi:10.1007/BF02186235

    Article  Google Scholar 

  • Seshadri CV, Thomas S (1979) Mass culture of spirulina using low-cost nutrients. Biotechnol Lett 1:287–291. doi:10.1007/BF01386766

    Article  CAS  Google Scholar 

  • Suh IS, Lee C-G (2003) Photobioreactor engineering: design and performance. Biotechnol Bioproc Eng 8:313–321. doi:10.1007/BF02949274

    Article  CAS  Google Scholar 

  • Tang H, Chen M, Simon Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474. doi:10.1002/bit.24516

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of spirulina biomass in closed photobioreactors. Biomass 11:61–74. doi:10.1016/0144-4565(86)90021-1

    Article  Google Scholar 

  • Travieso L, Hall DO, Rao KK, Benitez F, Sanchez E, Borja R (2001) A helical tubular photobioreactor producing spirulina in a semicontinuous mode. Int Biodeterioration Biodegradation 47(3):151–155. doi:10.1016/S0964-8305(01)00043-9

  • Tredici MR (2003) In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford. doi:10.1002/9780470995280

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028. doi:10.1016/j.biortech.2007.01.046

    Article  CAS  Google Scholar 

  • Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of porphyridium. Biomass 8:13–25. doi:10.1016/0144-4565(85)90032-0

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi:10.1007/s00253-008-1518-y

    Article  CAS  Google Scholar 

  • Wang B, Yang X, Lu J, Zhou Y, Su J, Tian Y, Zhang J, Wang G, Zheng T (2012) A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae 13:83–88. doi:10.1016/j.hal.2011.10.006

  • Watanabe Y, De la Noue J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 47:261–269. doi:10.1002/bit.260470218

    Article  CAS  Google Scholar 

  • Williams D (2009) Algenol biofuels announces plan to build and operate a pilot-scale algae-based integrated biorefinery. J Can Petroleum Technol 48:6–8

    Google Scholar 

  • Yanagi M, Watanabe Y, Saiki H (1995) CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Conver Manag 36:713–716. doi:10.1016/0196-8904(95)00104-L

  • Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Commun Curr Res Educ Topics Trends Appl Microbiol 1:79–89

    Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455. doi:10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M

    Article  CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. doi:10.1016/j.biortech.2010.09.017

    Article  CAS  Google Scholar 

  • Zhu J, Rong J, Zong B (2013) Factors in mass cultivation of microalgae for biodiesel. Chin J Catalys 34:80–100. doi:10.1016/S1872-2067(11)60497-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajbhan Sevda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Sevda, S., Bhattacharya, S., Reesh, I.M.A., Bhuvanesh, S., Sreekrishnan, T.R. (2017). Challenges in the Design and Operation of an Efficient Photobioreactor for Microalgae Cultivation and Hydrogen Production. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_7

Download citation

Publish with us

Policies and ethics