Challenges in the Design and Operation of an Efficient Photobioreactor for Microalgae Cultivation and Hydrogen Production

  • Surajbhan SevdaEmail author
  • Sourish Bhattacharya
  • Ibrahim M. Abu Reesh
  • S. Bhuvanesh
  • T. R. Sreekrishnan


The major challenge in the production of biofuels from microalgae is the need to generate sufficient quantities of microalgal biomass and an environmentally friendly and cost-effective method for extraction of oil from the biomass. Biomass can be generated by cultivating microalgae in open ponds or closed photobioreactor systems. When using a photobioreactor system, it is possible to have better control over parameters such as temperature, pH, light intensity, dissolved oxygen and dissolved carbon dioxide. However, they consume more energy and are expensive to operate. Cultivation of microalgae in open ponds is cheaper, and it utilises less energy as compared to closed photobioreactors. But, it is not possible to control physical parameters like temperature and light intensity as they depend on the environmental conditions. Also, contamination from other predators, parasites and weeds needs to be addressed. Considering, the overall cost-effectiveness, it may be possible to cultivate microalgae in open ponds under semi-continuous systems. Direct production of hydrogen using photosynthetic microorganisms such as microalgae may also be considered since it can be energetically more favourable than cultivating, harvesting and processing the biomass for biofuel production. In such cases, degradation of the hydrogen produced by the hydrogenase enzyme present in the system needs to be managed. Considering future energy demands, the possibility of CO2 sequestration and bioenergy production from microalgae and the overall ease of cultivation, it may be possible to use semi-continuous cultivation in open ponds for generating microalgal biomass with better biomass yield.


Biofuel Production Mass Cultivation Bubble Column Flat Panel Microalgal Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bacellar Mendes L, Vermelho A (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6(1):152. doi: 10.1186/1754-6834-6-152 CrossRefGoogle Scholar
  2. Barbosa MJ, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20(4):115–123. doi: 10.1016/S1389-0344(03)00033-9 CrossRefGoogle Scholar
  3. Bergmann P, Ripplinger P, Beyer L, Trosch W (2013) Disposable flat panel airlift photobioreactors. Chemie Ingenieur Technik 85(1–2):202–205. doi: 10.1002/cite.201200132 CrossRefGoogle Scholar
  4. Boden TA, Marland G, Andres RJ (2012) Global, regional, and national fossil-fuel CO2 emissions. Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi: 10.3334/CDIAC/00001_V2012
  5. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi: 10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  6. Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technol 101(17):6768–6777. doi: 10.1016/j.biortech.2010.03.103
  7. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506. doi: 10.1021/bp060065r CrossRefGoogle Scholar
  8. Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97(2):322–329. doi: 10.1016/j.biortech.2005.02.037 CrossRefGoogle Scholar
  9. Chen F, Johns MR (1996a) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604. doi: 10.1016/S0032-9592(96)00006-4 CrossRefGoogle Scholar
  10. Chen F, Johns MR (1996b) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19. doi: 10.1007/BF02186216
  11. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi: 10.1016/j.tibtech.2007.12.002 CrossRefGoogle Scholar
  12. Dormido R, Sanchez J, Duro N, Dormido-Canto S, Guinaldo M, Dormido S (2014) An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system. Sensors (Basel, Switzerland) 14(3):4466–4483. doi: 10.3390/s140304466 CrossRefGoogle Scholar
  13. Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. doi: 10.2791/3339
  14. Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105. doi: 10.1016/j.biortech.2010.06.016 CrossRefGoogle Scholar
  15. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335. doi: 10.1038/nature11479 CrossRefGoogle Scholar
  16. Gressler P, Bjerk T, Schneider R, Souza M, Lobo E, Zappe A, Corbellini VA, Moraes M (2014) Cultivation of Desmodesmus subspicatus in a tubular photobioreactor for bioremediation and microalgae oil production. Environ Technol 35(2):209–219. doi: 10.1080/09593330.2013.822523
  17. Guan J, Xiao Y, Song J, Miao J (2014) A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal. Front Earth Sci 8(1):142–149. doi: 10.1007/s11707-013-0370-2 CrossRefGoogle Scholar
  18. Ho SH, Kondo A, Hasunuma T, Chang JS (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol 143:163–171. doi: 10.1016/j.biortech.2013.05.043 CrossRefGoogle Scholar
  19. Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102(12):6687–6695. doi: 10.1016/j.biortech.2011.03.098 CrossRefGoogle Scholar
  20. Kaidi F, Rihani R, Ounnar A, Benhabyles L, Naceur MW (2012) Photobioreactor design for hydrogen production. Procedia Eng 33:492–498. doi: 10.1016/j.proeng.2012.01.1229 CrossRefGoogle Scholar
  21. Keffer JE, Kleinheinz GT (2002) Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J Industr Microbiol Biotechnol 29:275–280. doi: 10.1038/sj.jim.7000313
  22. Kroger M, Muller-Langer F (2012) Review on possible algal-biofuel production processes. Biofuels 3(3):333–349. doi: 10.4155/bfs.12.14 CrossRefGoogle Scholar
  23. Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Tech 43:6475–6481. doi: 10.1021/es900705j
  24. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315. doi: 10.1023/A:1017560006941 CrossRefGoogle Scholar
  25. Lee K, Lee C-G (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioproc Eng 6:194–199. doi: 10.1007/BF02932550 CrossRefGoogle Scholar
  26. Lestari S, Maki-Arvela P, Beltramini J, Lu GQM, Murzin DY (2009) Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2:1109–1119. doi: 10.1002/cssc.200900107 CrossRefGoogle Scholar
  27. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(1):815–820. doi: 10.1021/bp.070371k Google Scholar
  28. Li J, Stamato M, Velliou E, Jeffryes C, Agathos SN (2014) Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. J Appl Phycol 27(1):75–86. doi: 10.1007/s10811-014-0335-1 CrossRefGoogle Scholar
  29. Liu J, Huang J, Chen F (2011) Microalgae as feedstocks for biodiesel production. In: Biodiesel feedstocks and processing technologies. InTech, Rijeka, pp 133–160Google Scholar
  30. Lu J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466. doi: 10.1039/c0ee00593b CrossRefGoogle Scholar
  31. Maness PC, Weaver PF (2002) Hydrogen production from a carbon-monoxide oxidation pathway in Rubrivivax gelatinosus. Int J Hydr Energy 27(11–12):1407–1411. doi: 10.1016/S0360-3199(02)00107-6
  32. Maness PC, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71(6):2870–2874. doi: 10.1128/AEM.71.6.2870-2874.2005 CrossRefGoogle Scholar
  33. Markou G, Angelidaki I, Georgakakis D (2013) Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111:872–879. doi: 10.1016/j.fuel.2013.04.013 CrossRefGoogle Scholar
  34. Markov SA (2012) Hydrogen production in bioreactors: current trends. Energy Procedia 29:394–400. doi: 10.1016/j.egypro.2012.09.046 CrossRefGoogle Scholar
  35. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. doi: 10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  36. Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotechnol 105–108:247–254. doi: 10.1385/ABAB:105:1–3:247
  37. Metz B, Davidson OR, Bosch PR, Dave LA (eds) (2007) Climate change 2007: mitigation of climate change contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, Retrieved from Google Scholar
  38. Miron AS, Garcia MCC, Camacho F, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023. doi: 10.1016/S0141-0229(02)00229-6
  39. Molina E, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131. doi: 10.1016/S0168-1656(01)00353-4 CrossRefGoogle Scholar
  40. Oron G, Shelef G, Levi A (1979) Growth of Spirulina maxima on cow-manure wastes. Biotechnol Bioeng 21:2169–2173. doi: 10.1002/bit.260211203 CrossRefGoogle Scholar
  41. Oswald WJ (1992) Microalgae and wastewater treatment. In: Borowitzka A, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 305–328Google Scholar
  42. Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol 142:64–69. doi: 10.1016/j.jbiotec.2009.03.015 CrossRefGoogle Scholar
  43. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. doi: 10.1007/s002530100702 CrossRefGoogle Scholar
  44. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. doi: 10.1016/0167-7799(92)90282-Z CrossRefGoogle Scholar
  45. Richmond A (2003) Handbook of microalgal culture. In: Richmond A (ed) Biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford. doi: 10.1002/9780470995280 Google Scholar
  46. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332. doi: 10.1007/BF02186235 CrossRefGoogle Scholar
  47. Seshadri CV, Thomas S (1979) Mass culture of spirulina using low-cost nutrients. Biotechnol Lett 1:287–291. doi: 10.1007/BF01386766 CrossRefGoogle Scholar
  48. Suh IS, Lee C-G (2003) Photobioreactor engineering: design and performance. Biotechnol Bioproc Eng 8:313–321. doi: 10.1007/BF02949274 CrossRefGoogle Scholar
  49. Tang H, Chen M, Simon Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474. doi: 10.1002/bit.24516 CrossRefGoogle Scholar
  50. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of spirulina biomass in closed photobioreactors. Biomass 11:61–74. doi: 10.1016/0144-4565(86)90021-1 CrossRefGoogle Scholar
  51. Travieso L, Hall DO, Rao KK, Benitez F, Sanchez E, Borja R (2001) A helical tubular photobioreactor producing spirulina in a semicontinuous mode. Int Biodeterioration Biodegradation 47(3):151–155. doi: 10.1016/S0964-8305(01)00043-9
  52. Tredici MR (2003) In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford. doi: 10.1002/9780470995280 Google Scholar
  53. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028. doi: 10.1016/j.biortech.2007.01.046 CrossRefGoogle Scholar
  54. Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of porphyridium. Biomass 8:13–25. doi: 10.1016/0144-4565(85)90032-0 CrossRefGoogle Scholar
  55. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi: 10.1007/s00253-008-1518-y CrossRefGoogle Scholar
  56. Wang B, Yang X, Lu J, Zhou Y, Su J, Tian Y, Zhang J, Wang G, Zheng T (2012) A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae 13:83–88. doi: 10.1016/j.hal.2011.10.006
  57. Watanabe Y, De la Noue J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 47:261–269. doi: 10.1002/bit.260470218 CrossRefGoogle Scholar
  58. Williams D (2009) Algenol biofuels announces plan to build and operate a pilot-scale algae-based integrated biorefinery. J Can Petroleum Technol 48:6–8Google Scholar
  59. Yanagi M, Watanabe Y, Saiki H (1995) CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Conver Manag 36:713–716. doi: 10.1016/0196-8904(95)00104-L
  60. Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Commun Curr Res Educ Topics Trends Appl Microbiol 1:79–89Google Scholar
  61. Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455. doi: 10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M CrossRefGoogle Scholar
  62. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. doi: 10.1016/j.biortech.2010.09.017 CrossRefGoogle Scholar
  63. Zhu J, Rong J, Zong B (2013) Factors in mass cultivation of microalgae for biodiesel. Chin J Catalys 34:80–100. doi: 10.1016/S1872-2067(11)60497-X CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Surajbhan Sevda
    • 1
    • 2
    Email author
  • Sourish Bhattacharya
    • 3
  • Ibrahim M. Abu Reesh
    • 1
  • S. Bhuvanesh
    • 2
  • T. R. Sreekrishnan
    • 2
  1. 1.Department of Chemical Engineering, School of EngineeringQatar UniversityDohaQatar
  2. 2.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.Process Design and Engineering CellCentral Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations