Characterization and Screening of Algal Strains for Sustainable Biohydrogen Production: Primary Constraints

  • Ramkrishna Ghosh
  • Punyasloke Bhadury
  • Manojit Debnath


Algae have emerged as one of the most promising sources for biofuel production. In particular, microalgae can provide several different types of renewable biofuels like biodiesel, ethanol, and biohydrogen. Oxygenic photosynthesis splits water to release oxygen gas and uses the hydrogen atoms to drive the reduction of carbon dioxide to sugars. Under some circumstances, cyanobacteria are able to release the reductant as hydrogen gas. Hydrogen is an excellent source for fuel cells and has some attractive features such as three times more potentiality than ethanol. Algal communities including cyanobacteria can produce H2 through three main routes: (1) H2 production directly from native bidirectional hydrogenase, (2) H2 production from a native nitrogenase, and (3) H2 production from an introduced hydrogenase. Over the last decade or so, several new algal hydrogenases have been reported in literature, and efforts have been undertaken by manipulation of genetic pathways and metabolic engineering approaches. However, such approaches have shown constraints in terms of scale-up at the industrial level. This chapter highlights the aspect of metabolic engineering approaches and underlying constraints for biohydrogen production from algae. This chapter mainly discusses biohydrogen production potential of algae with a focus on understanding of biomass production, optimization of H2 production in response to strength of selected solution, and pH of the culture medium.


Hydrogen Production Microalgal Biomass Microalgal Cell Biohydrogen Production Hydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen RA (ed) (2005) Algal cultural techniques. Phycological Society of America, Elsevier, p 556Google Scholar
  2. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120. doi: 10.1111/j.1365-2672.2004.02431.x CrossRefGoogle Scholar
  3. Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607(2–3):153–160. doi: 10.1016/j.bbabio.2003.09.008 CrossRefGoogle Scholar
  4. Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferm Bioeng 83(1):17–20. doi: 10.1016/S0922-338X(97)87320-5 CrossRefGoogle Scholar
  5. Asada Y, Koike Y, Schnackenberg J, Miyake M, Uemura I, Miyake J (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta 1490(3):269–278. doi: 10.1016/S0167-4781(00)00010-5 CrossRefGoogle Scholar
  6. Ayhan D (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34. doi: 10.1016/j.enconman.2008.09.001 CrossRefGoogle Scholar
  7. Balk J, Pierik AJ, Netz DJA, Mu-hlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. The EMBO J 23(10):2105–2115. doi: 10.1038/sj.emboj.7600216 CrossRefGoogle Scholar
  8. Bandyopadhyay A, Jana Stöckel J, Hongtao Min H, Sherman LA, Himadri B, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic condition. Nat Commun 1:139. doi: 10.1038/ncomms1139 CrossRefGoogle Scholar
  9. Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: a case study. Biomass Bioenergy 33(6):911–919. doi: 10.1016/j.biombioe.2009.02.007 CrossRefGoogle Scholar
  10. Berberoglu H, Jenny J, Laurent P (2008) Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. Int J Hydrog Energy 33(4):1172–1184. doi: 10.1016/j.ijhydene.2007.12.036 CrossRefGoogle Scholar
  11. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499(7456):66–69. doi: 10.1038/nature12239 CrossRefGoogle Scholar
  12. Bernat G, Waschewski N, Rogner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99(3):205–216. doi: 10.1007/s11120-008-9398-7 CrossRefGoogle Scholar
  13. Bethmann B, Schönknecht G (2009) PH regulation in an acidophilic green alga-a quantitative analysis. New Phytol 183(2):327–339. doi: 10.1111/j.1469-8137.2009.02862.x CrossRefGoogle Scholar
  14. Boichenko VA, Greenbaum E, Seibert M (2004) Hydrogen producton by photosynthetic microorganisms. In: Archer MD, Barber J (ed) Molecular and global photosynthesis. IC Press, London. Chapter 8, pp 397–455Google Scholar
  15. Boison G, Bothe H, Schmitz O (2000) Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40(5):315–321. doi: 10.1007/s002849910063 CrossRefGoogle Scholar
  16. Borodin VB, Tsygankov AA, Rao KK, Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69(5):478–485. doi: 10.1002/1097-0290(20000905)69:5<478 CrossRefGoogle Scholar
  17. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551. doi: 10.1128/MMBR.00033-10 CrossRefGoogle Scholar
  18. Brand JJ, Wright JN, Lien S (1989) Hydrogen production by eukaryotic algae. Biotechnol Bioeng 33(11):1482–1488. doi: 10.1002/bit.260331116 CrossRefGoogle Scholar
  19. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102. doi: 10.1016/S1385-8947(02)00142-0 CrossRefGoogle Scholar
  20. Burgdorf T, Lo¨scher S, Liebisch P, Van der Linden E, Galander M, Lendzian F, Meyer-Klaucke W, Albracht SP, Friedrich B, Dau H, Haumann M (2005) J Am Chem Soc 127:576–592CrossRefGoogle Scholar
  21. Burrows EH, Chaplen FWR, Ely RL (2008) Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int J Hydrog Energy 33(21):6092–6099. doi: 10.1016/j.ijhydene.2008.07.102 CrossRefGoogle Scholar
  22. Chader S, Haceneb H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrog Energy 34:4941–4946CrossRefGoogle Scholar
  23. Chen HC, Yokthongwattana K, Newton AJ, Melis A (2003) SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218(1):98–106. doi: 10.1007/s00425-003-1076-6 CrossRefGoogle Scholar
  24. Chen H, Newton A, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H-2 evolution in Chlamydomonas reinhardtii. Photosyn Res 84(1–3):289–296. doi: 10.1007/s11120-004-7157-y CrossRefGoogle Scholar
  25. Chen PPC, Fan SH, Chiang CL, Lee CM (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3. Int J Hydrog Energy 33:1460–1464CrossRefGoogle Scholar
  26. Cuaresma M, Marcel Janssen M, Vílchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102(8):5129–5137. doi: 10.1016/j.biortech.2011.01.078 CrossRefGoogle Scholar
  27. Dal’Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM; a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(Suppl 4):S5. doi: 10.1186/1471-2164-12-S4-S5 CrossRefGoogle Scholar
  28. Darzins Al (NREL), Philip Pienkos (NREL), Les Edye (BioIndustry Partners) (2010) Current status and potential for algal biofuels production executive summary report T39-T2. August 6. Cited 14 Jan 2015Google Scholar
  29. Das D, Veziroglu TN (2001) Hydrogen production by biological processes a survey of literature. Int J Hydrog Energy 26(1):13–28. doi: 10.1016/S0360-3199(00)00058-6 CrossRefGoogle Scholar
  30. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33(21):6047–6057. doi: 10.1016/j.ijhydene.2008.07.098 CrossRefGoogle Scholar
  31. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010a) Current status, barriers and developments in biohydrogen production by microalgae. Int J Hydrog Energy 33:1–21Google Scholar
  32. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010b) Recent trends on the development of photobiological processes and photo bioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238CrossRefGoogle Scholar
  33. de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conv Manag 48(7):2169–2173. doi: 10.1016/j.enconman.2006.12.011 CrossRefGoogle Scholar
  34. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land based crops for biofuels. Curr Opin Biotechnol 19(3):235–240. doi: 10.1016/j.copbio.2008.05.007 CrossRefGoogle Scholar
  35. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii impacts on biological H2 production. J Biotechnol 131:27–33. doi: 10.1016/j.jbiotec.2007.05.017 CrossRefGoogle Scholar
  36. Dubini A, Maria L, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res Rev 84(1–3):289–296. doi: 10.1007/s11120-014-9991-x Google Scholar
  37. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108(10):3941–3946. doi: 10.1073/pnas.1016026108 CrossRefGoogle Scholar
  38. Dutta D, Debojyoti D, Chaudhuri S, Bhattacharya S (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36. doi: 10.1186/1475-2859-4-36 CrossRefGoogle Scholar
  39. Ekman M, Ow SY, Holmqvist M, Zang X, van Wagenen J, Wright PC, Stensjo K (2011) Metabolic adaptation in a H2 producing heterocyst-forming cyanobacterium: potentials and implication for biological engineering. J Proteomics Res 10(4):1772–1784. doi: 10.1021/pr101055v CrossRefGoogle Scholar
  40. Esquivel MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29(12):595–600. doi: 10.1016/j.tibtech.2011.06.008 CrossRefGoogle Scholar
  41. Falkowski PG, Raven JA (2013) An introduction to photosynthesis in aquatic system, (Chapter 1). Aquatic photosynthesis. Princeton University Press, USA, pp 1–43Google Scholar
  42. Falkowski PG, Katz M, Knoll AH, Quigg A, Raven JA, Schofield OM, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360. doi: 10.1126/science.1095964 CrossRefGoogle Scholar
  43. Fernandez FGA, Sevilla JMF, Perez JAS, Molina GE, Christi Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732CrossRefGoogle Scholar
  44. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic component. Science 281(5374):237–240. doi: 10.1126/science.281.5374.237 CrossRefGoogle Scholar
  45. Florin L, Tsokoglou A, Happe T (2001) A novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. J Biol Chem 276:6125–6132. doi: 10.1074/jbc.M008470200 CrossRefGoogle Scholar
  46. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303CrossRefGoogle Scholar
  47. Forestier M, King P, Posewitz M, Schwarzer S, Happe T, Zhang L, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758. doi: 10.1046/j.1432-1033.2003.03656 CrossRefGoogle Scholar
  48. Fouchard S, Pruvost J, Legrand J (2008) Investigation of H2 production by microalgae in a fully-controlled photobioreactor. Int J Hydrog Energy 33:3302–3310CrossRefGoogle Scholar
  49. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240. doi: 10.1085/jgp.26.2.219 CrossRefGoogle Scholar
  50. Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36(1):158–162. doi: 10.1016/j.renene.2010.06.016 CrossRefGoogle Scholar
  51. Gartner K, Lechno-Yossef S, Cornish AJ, Wolk CP, Hegg EL (2012) Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC7120. Appl Environ Microbiol 78(24):8579–8586. doi: 10.1128/AEM.01959-12 CrossRefGoogle Scholar
  52. Gerloff-Elias A, Barua D, Mölich A, Spijkerman E (2006) Temperature and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 56(3):345–354. doi: 10.1111/j.1574-6941.2006.00078.x CrossRefGoogle Scholar
  53. Ghirardi ML (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotechnol 63:141–151. doi: 10.1007/978-1-4612-2312-2-14 CrossRefGoogle Scholar
  54. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yo J, Seibert M (2007) Hydrogen and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91. doi: 10.1146/annurev.arplant.58.032806.103848 CrossRefGoogle Scholar
  55. Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K, Cook K, Mayor DJ (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483. doi: 10.1038/nature13123 CrossRefGoogle Scholar
  56. Godman JE, Molna’r A, Baulcombe DC Balk J (2010) RNA silencing of hydrogenase (-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem J 431:345–351CrossRefGoogle Scholar
  57. Graham JE, Graham LE, Wilcox LW (2008) Algae, 2nd edn. Benjamin Cummings, USAGoogle Scholar
  58. Graham JE, Wilcox LW, Graham LE (2000) Algae, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  59. Guan YF, Deng MC, Yu XJ, Zhang W (2004) Two-stage photobiological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73CrossRefGoogle Scholar
  60. Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production, part 2. Springer, New York, pp 15–28. doi: 10.1007/978-1-4614-1208-3-2 CrossRefGoogle Scholar
  61. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11–12):1185–1193. doi: 10.1016/S0360-3199(02)00131-3 CrossRefGoogle Scholar
  62. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phys Chem Chem Phys 31(10):3345–3348. doi: 10.1016/0031-9422(92)83682-O Google Scholar
  63. Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269(3):1022–1032. doi: 10.1046/j.0014-2956.2001.02743.x CrossRefGoogle Scholar
  64. Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481. doi: 10.1111/j.1432-1033.1993.tb17944.x CrossRefGoogle Scholar
  65. Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774. doi: 10.1111/j.1432-1033.1994.tb18923.x CrossRefGoogle Scholar
  66. Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacteria Anabaena variabilis ATCC29413. J Bacteriol 182(6):1624–1631. doi: 10.1128/JB.182.6.1624-1631.2000 CrossRefGoogle Scholar
  67. He M, Li L, Zhang L, Liu J (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. Int J Hydrog Energy 37(22):16903–16915CrossRefGoogle Scholar
  68. Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151(6):558–564. doi: 10.1007/BF00454875 CrossRefGoogle Scholar
  69. Homann PH (2003) Hydrogen metabolism of green algae. Discovery and early research-a tribute to Hans Gaffron and his coworkers. Photosynth Res 76(1–3):93–103. doi: 10.1023/A:1024935223225 CrossRefGoogle Scholar
  70. Howarth DC, Codd GA (1985) The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131(7):1561–1569. doi: 10.1099/00221287-131-7-1561 Google Scholar
  71. Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25(5):421–425. doi: 10.1023/A:1022489108980 CrossRefGoogle Scholar
  72. Hu Q, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8(2):139–145. doi: 10.1007/BF02186317 CrossRefGoogle Scholar
  73. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639. doi: 10.1111/j.1365-313X.2008.03492.x CrossRefGoogle Scholar
  74. Hwang JH, Kim HC, Choi JA, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR, Song H, Nam IH, Su-Nam Kim SN, Lee W, Park D, Kim Y, Choi J, Ji MK, Jung W, Jeon BH (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5:3234. doi: 10.1038/ncomms4234 Google Scholar
  75. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–32Google Scholar
  76. Iqbal M, Grey D, Stepan-Sarkissian F, Fowler MW (1993) A flat-sided photobioreactor for continuous culturing microalgae. Aquacult Eng 12:183–190CrossRefGoogle Scholar
  77. Jackson DD, Ellms JW (1896) On odors and surface waters with special reference to Anabaena, a microscopical organism found in certain water supplies of Massachusetts. Rep Mass State Board Health 410–420Google Scholar
  78. Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38(11):1171–1176CrossRefGoogle Scholar
  79. Khanal SSK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrog Energy 29:1123–1131Google Scholar
  80. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102(1):50–58. doi: 10.1002/bit.22050 CrossRefGoogle Scholar
  81. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78(7):731–740. doi: 10.1002/bit.10254 CrossRefGoogle Scholar
  82. Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44(2):146–155. doi: 10.1093/pcp/pcg020 CrossRefGoogle Scholar
  83. Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36(3):2044–2048. doi: 10.1016/j.ijhydene.2010.10.041 CrossRefGoogle Scholar
  84. Kruse O, Rupprecht J, Bader K, Thomas-Hall S, Schenk PM, Finazzi G, Hnkamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177. doi: 10.1074/jbc.M503840200 CrossRefGoogle Scholar
  85. Kufryk G (2013) Advances in utilizing cyanobacteria for hydrogen production. Adv Microbiol 3:60–68. doi: 10.4236/aim.2013.36A008 CrossRefGoogle Scholar
  86. Kumar K, Roy S, Das D (2013) Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour Technol 145:116–122. doi: 10.1016/j.biortech.2013.01.137 CrossRefGoogle Scholar
  87. Kumazawa S (2003) Photoproduction of hydrogen by the marine heterocystous cyanobacterium Anabaena species TU37-1 under a nitrogen atmosphere. Mar Biotechnol, NY 5(3):222–226. doi: 10.1007/s10126-002-0106-x CrossRefGoogle Scholar
  88. Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34. doi: 10.1186/1754-6834-4-34 CrossRefGoogle Scholar
  89. Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83(1):159–162. doi: 10.1016/0014-5793(77)80664-9 CrossRefGoogle Scholar
  90. Lambert GR, Daday A, Smith GD (1979) Hydrogen evolution from immobilized cultures of the cyanobacterium Anabaena cylindrica B629. FEBS Lett 101:125–128. doi: 10.1016/0014-5793(79)81309-5 CrossRefGoogle Scholar
  91. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of hydrogen photoproduction by immobilized sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 31(5):659–667. doi: 10.1016/j.ijhydene.2005.05.002 CrossRefGoogle Scholar
  92. Lee RE (2009) Phycology. Cambridge University Press, CambridgeGoogle Scholar
  93. Lee JW, Greenbaum E (2003) A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl Biochem Biotechnol 106(1–2–3):303–313CrossRefGoogle Scholar
  94. Lee YK, Ding SY, Low CS, Chang YC (1995) Design and performance of an a-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51CrossRefGoogle Scholar
  95. Lee YYJ, Miyahara T, Noike T (2002) Effect of pH on microbial hydrogen fermentation. J Chem Technol Biotechnol 77(6):694–698. doi: 10.1002/jctb.623 CrossRefGoogle Scholar
  96. Leino H, Shunmugam S, Isoja¨rvi J, Oliveira P, Mulo P, Saari L, Battchikova N, Sivonen K, Lindblad P, Aro EV, Allahverdiyev Y (2014) Characterization of ten H2 producing cyanobacteria isolated from the baltic sea and finnish lakes. Int J Hydrog Energy 39(17):8983–8991. doi: 10.1016/j.ijhydene.2014.03.171 CrossRefGoogle Scholar
  97. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185. doi: 10.1016/S0360-3199(03)00094-6 CrossRefGoogle Scholar
  98. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735. doi: 10.1073/pnas.0603395103 CrossRefGoogle Scholar
  99. Lindberg P, Hansel A, Lindblad P (2000) hupS and hupL constitute a transcription unit in the cyanobacterium Nostoc sp. PCC73102. Arch Microbiol 174(1–2):129–133. doi: 10.1007/s002030000186 CrossRefGoogle Scholar
  100. Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC29133 and Its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 70(4):2137–2145. doi: 10.1128/AEM.70.4.2137-2145.2004 CrossRefGoogle Scholar
  101. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wild type Anabaena PCC7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy 27(11):1271–1281. doi: 10.1016/S0360-3199(02)00111-8 CrossRefGoogle Scholar
  102. Lubitz W, Reijerse EJ, Messinger J (2008) Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ Sci 1(1):15–31. doi: 10.1039/b808792j CrossRefGoogle Scholar
  103. Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) Oxygen-tolerant [NiFe]- hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133(42):16881–16892. doi: 10.1021/ja205393w CrossRefGoogle Scholar
  104. Madden C, Vaughn MD, Daez-Parez I, Brown KA, King PW, Gust D, Moore AL, Moore TA (2011) Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J Am Chem Soc 134(3):1577–1582. doi: 10.1021/ja207461t CrossRefGoogle Scholar
  105. Martnez-Jeronimo F, Espinosa-Chavez FA (1994) Laboratory-scale system for mass culture of freshwater microalgae in polyethylene bags. J Appl Phycol 6:423–425CrossRefGoogle Scholar
  106. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58(5):618–624. doi: 10.1007/s00253-002-0934-7 CrossRefGoogle Scholar
  107. Masukawa H, Kitashima M, Kazuhito Inoue K, Hidehiro Sakurai H, Hausinger RP (2012) Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. AMBIO 41(2):169–173. doi: 10.1007/s13280-012-0275-4 CrossRefGoogle Scholar
  108. Mata TM, Martins AA, Caetano NS (2009) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14(1):217–232. doi: 10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  109. Mata TA, Nidia AA, Caetano S (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232CrossRefGoogle Scholar
  110. Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34:7404–7416. doi: 10.1016/j.ijhydene.2009.05.078 CrossRefGoogle Scholar
  111. Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228CrossRefGoogle Scholar
  112. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086. doi: 10.1007/s00425-007-0609-9 CrossRefGoogle Scholar
  113. Melis A, Happe T (2004) Trails of green alga hydrogen research; from Hans Gaffron to new frontiers. Photosynth Res 80(1–3):401–409. doi: 10.1023/B:PRES.0000030421.31730 CrossRefGoogle Scholar
  114. Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrog Energy 31(11):1563–1573. doi: 10.1016/j.ijhydene.2006.06.038 CrossRefGoogle Scholar
  115. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefGoogle Scholar
  116. Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. A critical review. Environ Sci Technol 46(13):7073–7085. doi: 10.1021/es300917r CrossRefGoogle Scholar
  117. Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]- hydrogenases: insight into the role of HYDA2 in H2 production. Biochem Biophys Res Commun 417(2):704–709. doi: 10.1016/j.bbrc.2011.12.002 CrossRefGoogle Scholar
  118. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77(2–3):139–153CrossRefGoogle Scholar
  119. Miyake M, Asada Y (1997) Direct electroporation of clostridial hydrogenase into cyanobacterial cells. Biotechnol Tech 11(11):787–790. doi: 10.1023/A:1018417023074 CrossRefGoogle Scholar
  120. Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758Google Scholar
  121. Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69(6):693–698. doi: 10.1002/1097-0290(20000920)69:6 CrossRefGoogle Scholar
  122. Murphy M, Devlin G, Deverel R, McDonnel K (2013) Biofuel production in Ireland: an approach to 2020 targets with a focus on algal biomass. Energies 6(12):6391–6412. doi: 10.3390/en6126391 CrossRefGoogle Scholar
  123. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282(35):25475–25486. doi: 10.1074/jbc.M701415200 CrossRefGoogle Scholar
  124. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814. doi: 10.1111/j.1467-7652.2007.00285.x CrossRefGoogle Scholar
  125. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529. doi: 10.1007/s00253-004-1644-0 CrossRefGoogle Scholar
  126. Nayak BK, Roy S, Das D (2014) Biohydrogen production from algal biomass (Anabaena sp. PCC7120) cultivated in airlift photobioreactor. Int J Hydrog Energy 3(14):7553–7560. doi: 10.1016/j.ijhydene.2013.07.120 CrossRefGoogle Scholar
  127. Odum HT (1971) Environment, power and society. Wiley- Interscience, New York, USA, p 331Google Scholar
  128. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kagler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8(4):61375. doi: 10.1371/journal.pone.0061375 CrossRefGoogle Scholar
  129. Ohta S, Miyamoto K, Miura Y (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol 83:1022–1026CrossRefGoogle Scholar
  130. Oliveira P, Leitao E, Tamagnini P, Moradas-Ferreira P, Oxelfelt F (2004) Characterization and transcriptional analysis of hupSLW in Gloeothece sp. ATCC27152: an uptake hydrogenase from a unicellular cyanobacterium. Microbiology 150(11):3647–3655. doi: 10.1099/mic.0.27248-0 CrossRefGoogle Scholar
  131. Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270. doi: 10.1016/j.biortech.2013.10.076 CrossRefGoogle Scholar
  132. Oncel S, Sabankay M (2012) Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour Technol 121:228–234. doi: 10.1016/j.biortech.2012.06.079 CrossRefGoogle Scholar
  133. Otsuki T, Uchiyama S, Fujiki K, Fukunaga S (1998) Hydrogen production by a floating-type photobioreactor. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 369–374. doi: 10.1007/978-0-585-35132-2-45 Google Scholar
  134. Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser (MEPS) 142:261–272. doi: 10.3354/meps142261 CrossRefGoogle Scholar
  135. Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1(2):134–142. doi: 10.1016/j.algal.2012.07.002 CrossRefGoogle Scholar
  136. Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG7. Appl Environ Microbiol 45:1212–1220Google Scholar
  137. Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier, New York, pp 209–218Google Scholar
  138. Polle J, Kanakagiri S, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 271(1):49–59. doi: 10.1007/s00425-002-0968-1 Google Scholar
  139. Pottier L, Pruvost J, Deremetz J, Cornet JF, Legrand J, Dussap CG (2005) A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng 91(5):569–582. doi: 10.1002/bit.20475 CrossRefGoogle Scholar
  140. Quinn JM, Eriksson M, Moseley JL, Merchant S (2002) Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiol 128(2):463–471. CrossRefGoogle Scholar
  141. Rashid N, Lee K, Mahmood Q (2011) Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour Technol 102(2):2101–2104. doi: 10.1016/j.biortech.2010.08.032 CrossRefGoogle Scholar
  142. Rashid N, Rehman MSU, Memonb S, Rahman ZU, Lee K, Han J (2013) Current status, barriers and developments in biohydrogen production by microalgae. Renew Sustain Energy Rev 22:571–579. doi: 10.1016/j.rser.2013.01.051 CrossRefGoogle Scholar
  143. Resnick RJ (2004) The economics of biological methods of hydrogen production. Massachusetts Institute of Technology. (Thesis (S.M.M.O.T.) Massachusetts Institute of Technology, Sloan School of Management, Management of Technology Program, 2004. Includes bibliographical references, pp 98–108. URI: Cited 14th Jan 2015
  144. Roessler PG, Lien S (1984) Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant Physiol 76:1086–1089CrossRefGoogle Scholar
  145. Roy S, Kumar K, Ghosh S, Das D (2014) Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass Bioenergy 61:157–166. doi: 10.1016/j.biombioe.2013.12.006 CrossRefGoogle Scholar
  146. Ruhle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8(107):1471–2229. doi: 10.1186/1471-2229-8-107 Google Scholar
  147. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36(6–9):693–696. doi: 10.1016/0196-8904(95)00100-R CrossRefGoogle Scholar
  148. Satoh A, Kurano N, Senger H, Miyachi S (2002) Regulation of energy balance in photosystems in response to changes in CO2 concentrations and light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant Cell Physiol 43(4):440–451. doi: 10.1093/pcp/pcf054 CrossRefGoogle Scholar
  149. Scherer S, Kerfin W, Boger P (1980) Increase of nitrogenase activity in the blue-green alga Nostoc muscorum (Cyanobacterium). J Bacteriol 144:1017–1023Google Scholar
  150. Schmitz O, Bothe H (1996) The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften 83(11):525–527. doi: 10.1007/BF01141957 CrossRefGoogle Scholar
  151. Schmitz O, Boison G, Salzman H, Bothe H, Schutz K, Wang S, Happe T (2002) HoxE- a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys (BBA) Bioenergetics 1554(1–2):66–74. doi: 10.1016/S0005-2728(02)00214-1 CrossRefGoogle Scholar
  152. Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production; a comparative analysis. Planta 218:350–359CrossRefGoogle Scholar
  153. Schwarz S, Poss Z, Hoffmann D, Appel J (2010) Hydrogenases and hydrogen metabolism in photosynthetic prokaryotes. In: Hallenbeck PC (ed) Recent advances in phototrophic prokaryotes. Springer, New York, pp p305–p348CrossRefGoogle Scholar
  154. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157(4):613–619. doi: 10.1016/j.jbiotec.2011.06.019 CrossRefGoogle Scholar
  155. Serebryakova LT, Sheremetieva ME, Lindblad P (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 38:525–530CrossRefGoogle Scholar
  156. Skjånes K, Pinto FL, Lindblad P (2010) Evidence for transcription of three genes with characteristics of hydrogenases in the green alga Chlamydomonas noctigama. Int J Hydrog Energy 35:1074–1088CrossRefGoogle Scholar
  157. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. doi: 10.1016/j.biombioe.2012.12.019 CrossRefGoogle Scholar
  158. Smith RL, Kumar D, Zhang XK, Tabita FR, Baalen VC (1985) H2, N2, and O2 metabolism by isolated heterocysts from Anabaena sp. strain CA. J Bacteriol 162(2):565–570Google Scholar
  159. Song W, Rashid N, Choi W, Lee (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102(18):8676–8681. doi: 10.1016/j.biortech.2011.02.082 CrossRefGoogle Scholar
  160. Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brech E, Peters JW, Kuhl M, Grossman AR (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103(7):2398–2403. doi: 10.1073/pnas.0507513103 CrossRefGoogle Scholar
  161. Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147(2):297–301. doi: 10.1111/j.1574-6968.1997.tb10257.x CrossRefGoogle Scholar
  162. Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40(6):356–361. doi: 10.1007/s002840010070 CrossRefGoogle Scholar
  163. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20. doi: 10.1128/MMBR.66.1.1-20.2002 CrossRefGoogle Scholar
  164. Tamagnini P, Leita˜o E, Oliveira P, Ferreira D, Pinto F, Harris D (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720. doi: 10.1111/j.1574-6976.2007.00085.x CrossRefGoogle Scholar
  165. Tamburic B, Zemichael FW, Maitland GC, Hellgardt K (2011) Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 36(13):7872–7876. doi: 10.1016/j.ijhydene.2010.11.074 CrossRefGoogle Scholar
  166. Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34(10):4529–4536. doi: 10.1016/j.ijhydene.2008.07.093 CrossRefGoogle Scholar
  167. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197. doi: 10.1002/(SICI)1097-0290(19980120)5 CrossRefGoogle Scholar
  168. Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38(2):153–159. doi: 10.1016/0960-8524(91)90147-C CrossRefGoogle Scholar
  169. Tredici MR, Zittelli GC, Biagiolini S, Materassi R (1993) Novel photobioreactor for the mass cultivation of Spirulina sp. Bull Inst Oceanogr 12:89–96Google Scholar
  170. Tredici MR, Zittelli GC, Benemann JR (1998) A tubular integral gas exchange photobioreactor for biological hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 391–340. doi: 10.1007/978-0-585-35132-2-48 Google Scholar
  171. Tsygankov AA, Hall DO, Liu J, Rao KK (1998) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 431–440. doi: 10.1007/978-0-585-35132-2-52 Google Scholar
  172. Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80(7):777–783. doi: 10.1002/bit.10431 CrossRefGoogle Scholar
  173. Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Global Biogeochem Cycles 24:GB3016. doi: 10.1029/2009GB003680 CrossRefGoogle Scholar
  174. Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge, p 623Google Scholar
  175. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272CrossRefGoogle Scholar
  176. Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6(2):159–188Google Scholar
  177. Vignais PM, Magnin JP, Willison JC (2006) Increasing biohydrogen production by metabolic engineering. Int J Hydrog Energy 31:1478–1483. doi: 10.1016/j.ijhydene.2006.06.013 CrossRefGoogle Scholar
  178. Volgusheva A, Stenbjo¨rn S, Fikret M (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 110(18):7223–7228CrossRefGoogle Scholar
  179. Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotech 79(5):707–718CrossRefGoogle Scholar
  180. Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123–131Google Scholar
  181. Weyman PD, Smith HO, Xu Q (2011) Genetic analysis of the Alteromonas macleodii [NiFe]-hydrogenase. FEMS Microbiol Lett 322(2):180–187. doi: 10.1111/j.1574-6968.2011.02348.x CrossRefGoogle Scholar
  182. Winkler M, Heil B, Happe T (2002a) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334CrossRefGoogle Scholar
  183. Winkler M, Heschemeirer A, Gotor C, Melis A, Happe T (2002b) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439CrossRefGoogle Scholar
  184. Winkler M, Macurer C, Heschemeirer A, Happe T (2004) The isolation of green algal strains with outstanding H2 productivity. In: Miyake J, Igarshi Y, Roger M (eds) Biohydrogen III. Elsevier, New York, pp 103–115CrossRefGoogle Scholar
  185. Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102(3):2610–2616. doi: 10.1016/j.biortech.2010.09.123 CrossRefGoogle Scholar
  186. Wunschiers R, Stangier K, Senger H, Schulz R (2001) Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus. Curr Microbiol 42:353–360. doi: 10.1007/s002840010229 CrossRefGoogle Scholar
  187. Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9(1):101–112. doi: 10.1007/s10126-006-6035-3 CrossRefGoogle Scholar
  188. Zhang XK, Haskell JB, Tabita FR, Baalen VC (1983) Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F. J Bacteriol 156(3):1118–11Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Ramkrishna Ghosh
    • 1
  • Punyasloke Bhadury
    • 2
  • Manojit Debnath
    • 1
    • 2
  1. 1.Systematics and Applied Phycology Laboratory, Postgraduate Department of BotanyHooghly Mohsin CollegeHooghlyIndia
  2. 2.Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological SciencesIndian Institute of Science Education and Research KolkataNadiaIndia

Personalised recommendations