Advertisement

Exploiting Biohydrogen Pathways of Cyanobacteria and Green Algae: An Industrial Production Approach

  • Anubha Kaushik
  • Mona Sharma
Chapter

Abstract

Hydrogen is viewed as a clean and sustainable energy alternative of future that may change the present carbon-based economy to hydrogen-based economy in the years to come. Biohydrogen production by various microorganisms has emerged as a new area in energy generation that is moving ahead for industrial application. Cyanobacteria and green algae are photoautotrophic microbes that are capable of hydrogen generation by direct or indirect biophotolysis and photofermentation. Hydrogen production is mediated by hydrogenase and nitrogenase enzyme, both of which are oxygen sensitive. Various pathways and strategies of hydrogen production by these photoautotrophic microorganisms have been discussed in this chapter along with approaches to enhance hydrogen yields for prolonged duration using different photobioreactor designs. The possibility of using cyanobacteria and green algae for integrating hydrogen production with wastewater treatment and environmental implications thereof has also been discussed. In biological hydrogen production, there are no greenhouse gas emissions; thus, switching over to hydrogen as a future energy fuel would also help mitigate the global climate change problem.

Keywords

Hydrogen Production Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Dark Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams MWW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282(5395):1842–1843CrossRefGoogle Scholar
  2. Alalayah WM, Alhamed YA, Al-Zahrani A, Edris G (2014) Experimental investigation parameters of hydrogen production by algae Chlorella Vulgaris. International conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept. 17–18, 2014 Kuala Lumpur (Malaysia) doi: 10.1074/jbc.M111.302125 http://dx.doi.org/10.15242/IICBE.C914010
  3. Anjana K, Kaushik A (2014) Enhanced hydrogen production by immobilized cyanobacterium Lyngbya perelegans under varying anaerobic conditions. Biomass Bioenergy 63:54–57CrossRefGoogle Scholar
  4. Arik T, Gunduz U, Yucel M, Turker L, Sediroglu V, Eroglu I (1996) Photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. In: Proceedings of the 11th world hydrogen energy conference, Stuttgart, Germany, 3:2417–2424Google Scholar
  5. Asada Y, Kawamura S (1984) Hydrogen evolution by Microcystis aeruginosa in darkness. Agric Biol Chem 48:2595–2596CrossRefGoogle Scholar
  6. Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987CrossRefGoogle Scholar
  7. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300CrossRefGoogle Scholar
  8. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta A, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69CrossRefGoogle Scholar
  9. Bingham AS, Smith PR, Swartz JR (2012) Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int J Hydrog Energy 37:2965–2976CrossRefGoogle Scholar
  10. Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 736–762Google Scholar
  11. Boison G, Bothe H, Hansel A, Lindblad P (1999) Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria. FEMS Microbiol Lett 174:159–165CrossRefGoogle Scholar
  12. Bolton JR (1996) Solar photoproduction of hydrogen. Sol Energy 57:37–50CrossRefGoogle Scholar
  13. Borodin VB, Tsygankov AA, Rao KK, Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69:478–485CrossRefGoogle Scholar
  14. Burgdorf T, Buhrke T, van-der Linden E, Jones A, Albracht S, Friedrich B (2005) [NiFe]-hydrogenases of ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196CrossRefGoogle Scholar
  15. Cardoso VL, Romao BB, Felipe TM, Silva, Julia G, Santos, Fabiana RX, Batista, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Engg Trans 38:481–486Google Scholar
  16. Carlozzi P, Ena A, Carnevale S (2005) Hydrodynamic alterations during cyanobacteria (Arthrospira platensis) growth from low to high biomass concentration inside tubular photobioreactors. Biotechnol Prog 21:416–422CrossRefGoogle Scholar
  17. Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357CrossRefGoogle Scholar
  18. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28CrossRefGoogle Scholar
  19. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057CrossRefGoogle Scholar
  20. Dutta M, Nikki G, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:8–9Google Scholar
  21. Ernst A, Kerfi W, Spiller H, Boger P (1979) External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Z Naturforsch 34:820–825CrossRefGoogle Scholar
  22. Fedorov AS, Tsygankov AA, Rao KK, Hall DO (1998) Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol Lett 20:1007–1009CrossRefGoogle Scholar
  23. Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 487–517CrossRefGoogle Scholar
  24. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303CrossRefGoogle Scholar
  25. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol 18:506–511CrossRefGoogle Scholar
  26. Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318CrossRefGoogle Scholar
  27. Greening C, Berney M, Hards K, Cook GM, Conrad R (2014) A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent hydrogenases. Proc Acad Natl Sci USA 111(11):4257–4261CrossRefGoogle Scholar
  28. Guan Y, Deng M, Yu X, Zhang W (2004) Two stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73CrossRefGoogle Scholar
  29. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193CrossRefGoogle Scholar
  30. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347CrossRefGoogle Scholar
  31. Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564CrossRefGoogle Scholar
  32. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRefGoogle Scholar
  33. Hiromoto T, Warkentin E, Moll J, Ermler U, Shima S (2009) Iron-chromophore circular dichroism of [Fe]-hydrogenase: the conformational change required for H2 activation. Angew Chem Int 48:6457–6460CrossRefGoogle Scholar
  34. Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrog Energy 27:1331–1338CrossRefGoogle Scholar
  35. Hoppe-Seyler F (1987) Die Methanga¨rung der Essigsaure. Z Phys Chem 11:561–568Google Scholar
  36. Jensen BB, Burris RH (1986) Nitrous oxide as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25:1083–1088CrossRefGoogle Scholar
  37. Kaushik A, Anjana K (2011) Biohydrogen production by Lyngbya perelegans: influence of physico-chemical environment. Biomass Bioenergy 35(3):1041–1045CrossRefGoogle Scholar
  38. Kaushik A, Mona S, Kaushik CP (2011) Integrating photobiological hydrogen production with dye-metal bioremoval from simulated textile wastewater. Biores Technol 102:9957–9964CrossRefGoogle Scholar
  39. Kosourov NS, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102(1):50–58CrossRefGoogle Scholar
  40. Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur deprived, H2 producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44(2):146–155CrossRefGoogle Scholar
  41. Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162CrossRefGoogle Scholar
  42. Lambert GR, Daday A, Smith GD (1979) Hydrogen evolution from immobilized cultures of cyanobacterium Anabena cylindrica. FEBS Lett 101:125–128CrossRefGoogle Scholar
  43. Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA (2008) Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol 134:275–277Google Scholar
  44. Levin DB, Lawrence P, Murray L (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185CrossRefGoogle Scholar
  45. Liang J-H, Burris RH (1988) Interaction among nitrogen, nitrous oxide and acetylene as substrates and inhibitors of nitrogenase from Azotobacter vinelandii. Biochemistry 27:6726–6732CrossRefGoogle Scholar
  46. Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Léger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6(1):63–70CrossRefGoogle Scholar
  47. Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme Strain ATCC 29133 and its hydrogenase-deficient mutant Strain NHM5. Appl Environ Microbiol 70:2137–2145CrossRefGoogle Scholar
  48. Litcht R, Basin J, Hall DO (1997) The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl Microbiol Biotechnol 47:701–707Google Scholar
  49. Lo YC, Chen CY, Lee CM, Chang JS (2010) Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int J Hydrog Energy 35:10944–10953CrossRefGoogle Scholar
  50. Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA (2012) Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J Am Chem Soc 134:1577–1582CrossRefGoogle Scholar
  51. Masepohl B, Schoelisch K, Goerlitz K, Kutzki C, Bohme H (1997) The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation. Mol Gen Genet 253:770–776CrossRefGoogle Scholar
  52. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135CrossRefGoogle Scholar
  53. Miro’n AS, Go’mez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  54. Miura Y, Matsuoka S, Miyamoto K, Saltoh C (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechnol Biochem 56:751–754CrossRefGoogle Scholar
  55. Miura Y, Akano T, Fukatsu K, Miyasaka H, Mizoguchi T, Yagi K, Maeda I, Ikuta Y, Matsumoto H (1995) Hydrogen production by photosynthetic microorganisms. Energy Convers Manag 36:903–906CrossRefGoogle Scholar
  56. Miyake J, Asada Y, Kawamura S (1989) Nitrogenase. In: Kitani O, Hall CW (eds) Biomass handbook. Gorton and Breach Science Publishers, New York, pp 362–370Google Scholar
  57. Miyamoto K, Benemann JR (1988) Vertical tubular photobioreactor: design and operation. Biotechnol Lett 10:703–710CrossRefGoogle Scholar
  58. Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulphur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758Google Scholar
  59. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefGoogle Scholar
  60. Mona S, Kaushik A (2014) Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production. J Appl Phycol 27(3):1185–1194CrossRefGoogle Scholar
  61. Mona S, Kaushik A, Kaushik CP (2011) Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond. Biores Technol 102:3200–3205CrossRefGoogle Scholar
  62. Mona S, Kaushik A, Kaushik CP (2013) Prolonged hydrogen production by Nostoc in photobioreactor and multi-stage use of the biological waste for column biosorption of some dyes and metals. Biomass Bioenergy 50:27–35CrossRefGoogle Scholar
  63. Orme-Johnson WH (1992) Nitrogenase structure: where to now? Science 257:1639–1640CrossRefGoogle Scholar
  64. Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. Strain Miami BG7. Appl Environ Microbiol 45:1212–1220Google Scholar
  65. Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrog Energy 23:593–598CrossRefGoogle Scholar
  66. Rawson DM (1985) The effects of exogenous amino acids on growth and nitrogenase activity in the cyanobacterium Anabena cylindrica PCC 7122. J Gen Microbiol 134:2544–2549Google Scholar
  67. Reith JH, Wijffels RH, Barten H (2003) Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Netherlands ECN, The HagueGoogle Scholar
  68. Ren N, Guo W, Liu B, Cao G, Ding J (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370CrossRefGoogle Scholar
  69. Rivera-Ortiz JM, Burris RH (1975) Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 123:537–545Google Scholar
  70. Shah V (2000) Exploitation of cyanobacteria for photohydrogen production and wastewater treatment. Ph.D. thesis, Sardar Patel University, VallabhVidyanogar, IndiaGoogle Scholar
  71. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575CrossRefGoogle Scholar
  72. Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224(4653):1095–1097CrossRefGoogle Scholar
  73. Singh SK, Kishor K, Sundaram S (2014) Photosynthetic microorganisms mechanism for carbon concentration. Springer Cham Heidelberg, New York, pp 1–113Google Scholar
  74. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460–7478CrossRefGoogle Scholar
  75. Smith PR, Bingham AS, Swartz JR (2012) Generation of hydrogen from NADPH using an [Fe Fe] hydrogenase. Int J Hydrog Energy 37:2977–2983CrossRefGoogle Scholar
  76. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci 106:17331–17336CrossRefGoogle Scholar
  77. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20CrossRefGoogle Scholar
  78. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206CrossRefGoogle Scholar
  79. Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286Google Scholar
  80. Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production – a step towards clean environment. Int J Hydrog Energy 37:139–150CrossRefGoogle Scholar
  81. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197CrossRefGoogle Scholar
  82. Tredici MR, Zittelli GC, Benemann JR (1998) A tubular internal gas exchange photobioreactor for biological hydrogen production: preliminary cost analysis. In: Zaborsky O et al (eds) Bio hydrogen. Plenum Press, New York, pp 391–402Google Scholar
  83. Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578CrossRefGoogle Scholar
  84. Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607CrossRefGoogle Scholar
  85. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272CrossRefGoogle Scholar
  86. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501CrossRefGoogle Scholar
  87. Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123–131Google Scholar
  88. Wilson PW, Umbreit WW (1937) Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor. Arch Microbiol 8:440–457Google Scholar
  89. Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439CrossRefGoogle Scholar
  90. Yokoi H, Mori M, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20:895–899CrossRefGoogle Scholar
  91. Yoon JH, Sim SJ, Kim MS, Park TH (2002) High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int J Hydrog Energy 27:1265–1270CrossRefGoogle Scholar
  92. Zhao X, Xing D, Liu B, Lu L, Zhao J, Ren N (2012) The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. Int J Hydrog Energy 37:1711–1717Google Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.University School of Environment ManagementGGS Indraprastha UniversityNew DelhiIndia
  2. 2.Department of Environmental Sciences, School of Earth, Environment and Space StudiesCentral University of HaryanaMahendergarhIndia

Personalised recommendations