Skip to main content

Exploiting Biohydrogen Pathways of Cyanobacteria and Green Algae: An Industrial Production Approach

  • Chapter
  • First Online:

Abstract

Hydrogen is viewed as a clean and sustainable energy alternative of future that may change the present carbon-based economy to hydrogen-based economy in the years to come. Biohydrogen production by various microorganisms has emerged as a new area in energy generation that is moving ahead for industrial application. Cyanobacteria and green algae are photoautotrophic microbes that are capable of hydrogen generation by direct or indirect biophotolysis and photofermentation. Hydrogen production is mediated by hydrogenase and nitrogenase enzyme, both of which are oxygen sensitive. Various pathways and strategies of hydrogen production by these photoautotrophic microorganisms have been discussed in this chapter along with approaches to enhance hydrogen yields for prolonged duration using different photobioreactor designs. The possibility of using cyanobacteria and green algae for integrating hydrogen production with wastewater treatment and environmental implications thereof has also been discussed. In biological hydrogen production, there are no greenhouse gas emissions; thus, switching over to hydrogen as a future energy fuel would also help mitigate the global climate change problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MWW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282(5395):1842–1843

    Article  CAS  Google Scholar 

  • Alalayah WM, Alhamed YA, Al-Zahrani A, Edris G (2014) Experimental investigation parameters of hydrogen production by algae Chlorella Vulgaris. International conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept. 17–18, 2014 Kuala Lumpur (Malaysia) doi:10.1074/jbc.M111.302125 http://dx.doi.org/10.15242/IICBE.C914010

  • Anjana K, Kaushik A (2014) Enhanced hydrogen production by immobilized cyanobacterium Lyngbya perelegans under varying anaerobic conditions. Biomass Bioenergy 63:54–57

    Article  CAS  Google Scholar 

  • Arik T, Gunduz U, Yucel M, Turker L, Sediroglu V, Eroglu I (1996) Photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. In: Proceedings of the 11th world hydrogen energy conference, Stuttgart, Germany, 3:2417–2424

    Google Scholar 

  • Asada Y, Kawamura S (1984) Hydrogen evolution by Microcystis aeruginosa in darkness. Agric Biol Chem 48:2595–2596

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    Article  CAS  Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  • Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta A, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69

    Article  CAS  Google Scholar 

  • Bingham AS, Smith PR, Swartz JR (2012) Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int J Hydrog Energy 37:2965–2976

    Article  CAS  Google Scholar 

  • Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 736–762

    Google Scholar 

  • Boison G, Bothe H, Hansel A, Lindblad P (1999) Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria. FEMS Microbiol Lett 174:159–165

    Article  CAS  Google Scholar 

  • Bolton JR (1996) Solar photoproduction of hydrogen. Sol Energy 57:37–50

    Article  CAS  Google Scholar 

  • Borodin VB, Tsygankov AA, Rao KK, Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69:478–485

    Article  CAS  Google Scholar 

  • Burgdorf T, Buhrke T, van-der Linden E, Jones A, Albracht S, Friedrich B (2005) [NiFe]-hydrogenases of ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    Article  CAS  Google Scholar 

  • Cardoso VL, Romao BB, Felipe TM, Silva, Julia G, Santos, Fabiana RX, Batista, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Engg Trans 38:481–486

    Google Scholar 

  • Carlozzi P, Ena A, Carnevale S (2005) Hydrodynamic alterations during cyanobacteria (Arthrospira platensis) growth from low to high biomass concentration inside tubular photobioreactors. Biotechnol Prog 21:416–422

    Article  CAS  Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Dutta M, Nikki G, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:8–9

    Google Scholar 

  • Ernst A, Kerfi W, Spiller H, Boger P (1979) External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Z Naturforsch 34:820–825

    Article  Google Scholar 

  • Fedorov AS, Tsygankov AA, Rao KK, Hall DO (1998) Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol Lett 20:1007–1009

    Article  CAS  Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 487–517

    Chapter  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

    Article  CAS  Google Scholar 

  • Greening C, Berney M, Hards K, Cook GM, Conrad R (2014) A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent hydrogenases. Proc Acad Natl Sci USA 111(11):4257–4261

    Article  CAS  Google Scholar 

  • Guan Y, Deng M, Yu X, Zhang W (2004) Two stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347

    Article  CAS  Google Scholar 

  • Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564

    Article  CAS  Google Scholar 

  • Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  CAS  Google Scholar 

  • Hiromoto T, Warkentin E, Moll J, Ermler U, Shima S (2009) Iron-chromophore circular dichroism of [Fe]-hydrogenase: the conformational change required for H2 activation. Angew Chem Int 48:6457–6460

    Article  CAS  Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrog Energy 27:1331–1338

    Article  CAS  Google Scholar 

  • Hoppe-Seyler F (1987) Die Methanga¨rung der Essigsaure. Z Phys Chem 11:561–568

    Google Scholar 

  • Jensen BB, Burris RH (1986) Nitrous oxide as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25:1083–1088

    Article  CAS  Google Scholar 

  • Kaushik A, Anjana K (2011) Biohydrogen production by Lyngbya perelegans: influence of physico-chemical environment. Biomass Bioenergy 35(3):1041–1045

    Article  CAS  Google Scholar 

  • Kaushik A, Mona S, Kaushik CP (2011) Integrating photobiological hydrogen production with dye-metal bioremoval from simulated textile wastewater. Biores Technol 102:9957–9964

    Article  CAS  Google Scholar 

  • Kosourov NS, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102(1):50–58

    Article  CAS  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur deprived, H2 producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44(2):146–155

    Article  CAS  Google Scholar 

  • Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162

    Article  CAS  Google Scholar 

  • Lambert GR, Daday A, Smith GD (1979) Hydrogen evolution from immobilized cultures of cyanobacterium Anabena cylindrica. FEBS Lett 101:125–128

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA (2008) Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol 134:275–277

    CAS  Google Scholar 

  • Levin DB, Lawrence P, Murray L (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liang J-H, Burris RH (1988) Interaction among nitrogen, nitrous oxide and acetylene as substrates and inhibitors of nitrogenase from Azotobacter vinelandii. Biochemistry 27:6726–6732

    Article  CAS  Google Scholar 

  • Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Léger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6(1):63–70

    Article  CAS  Google Scholar 

  • Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme Strain ATCC 29133 and its hydrogenase-deficient mutant Strain NHM5. Appl Environ Microbiol 70:2137–2145

    Article  CAS  Google Scholar 

  • Litcht R, Basin J, Hall DO (1997) The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl Microbiol Biotechnol 47:701–707

    Google Scholar 

  • Lo YC, Chen CY, Lee CM, Chang JS (2010) Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int J Hydrog Energy 35:10944–10953

    Article  CAS  Google Scholar 

  • Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA (2012) Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J Am Chem Soc 134:1577–1582

    Article  CAS  Google Scholar 

  • Masepohl B, Schoelisch K, Goerlitz K, Kutzki C, Bohme H (1997) The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation. Mol Gen Genet 253:770–776

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  Google Scholar 

  • Miro’n AS, Go’mez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Miura Y, Matsuoka S, Miyamoto K, Saltoh C (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechnol Biochem 56:751–754

    Article  CAS  Google Scholar 

  • Miura Y, Akano T, Fukatsu K, Miyasaka H, Mizoguchi T, Yagi K, Maeda I, Ikuta Y, Matsumoto H (1995) Hydrogen production by photosynthetic microorganisms. Energy Convers Manag 36:903–906

    Article  CAS  Google Scholar 

  • Miyake J, Asada Y, Kawamura S (1989) Nitrogenase. In: Kitani O, Hall CW (eds) Biomass handbook. Gorton and Breach Science Publishers, New York, pp 362–370

    Google Scholar 

  • Miyamoto K, Benemann JR (1988) Vertical tubular photobioreactor: design and operation. Biotechnol Lett 10:703–710

    Article  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulphur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758

    CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A (2014) Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production. J Appl Phycol 27(3):1185–1194

    Article  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond. Biores Technol 102:3200–3205

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2013) Prolonged hydrogen production by Nostoc in photobioreactor and multi-stage use of the biological waste for column biosorption of some dyes and metals. Biomass Bioenergy 50:27–35

    Article  Google Scholar 

  • Orme-Johnson WH (1992) Nitrogenase structure: where to now? Science 257:1639–1640

    Article  CAS  Google Scholar 

  • Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. Strain Miami BG7. Appl Environ Microbiol 45:1212–1220

    CAS  Google Scholar 

  • Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrog Energy 23:593–598

    Article  CAS  Google Scholar 

  • Rawson DM (1985) The effects of exogenous amino acids on growth and nitrogenase activity in the cyanobacterium Anabena cylindrica PCC 7122. J Gen Microbiol 134:2544–2549

    Google Scholar 

  • Reith JH, Wijffels RH, Barten H (2003) Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Netherlands ECN, The Hague

    Google Scholar 

  • Ren N, Guo W, Liu B, Cao G, Ding J (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370

    Article  CAS  Google Scholar 

  • Rivera-Ortiz JM, Burris RH (1975) Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 123:537–545

    CAS  Google Scholar 

  • Shah V (2000) Exploitation of cyanobacteria for photohydrogen production and wastewater treatment. Ph.D. thesis, Sardar Patel University, VallabhVidyanogar, India

    Google Scholar 

  • Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575

    Article  CAS  Google Scholar 

  • Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224(4653):1095–1097

    Article  CAS  Google Scholar 

  • Singh SK, Kishor K, Sundaram S (2014) Photosynthetic microorganisms mechanism for carbon concentration. Springer Cham Heidelberg, New York, pp 1–113

    Google Scholar 

  • Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460–7478

    Article  CAS  Google Scholar 

  • Smith PR, Bingham AS, Swartz JR (2012) Generation of hydrogen from NADPH using an [Fe Fe] hydrogenase. Int J Hydrog Energy 37:2977–2983

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci 106:17331–17336

    Article  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  CAS  Google Scholar 

  • Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206

    Article  CAS  Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286

    CAS  Google Scholar 

  • Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production – a step towards clean environment. Int J Hydrog Energy 37:139–150

    Article  CAS  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Tredici MR, Zittelli GC, Benemann JR (1998) A tubular internal gas exchange photobioreactor for biological hydrogen production: preliminary cost analysis. In: Zaborsky O et al (eds) Bio hydrogen. Plenum Press, New York, pp 391–402

    Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578

    Article  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501

    Article  CAS  Google Scholar 

  • Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123–131

    CAS  Google Scholar 

  • Wilson PW, Umbreit WW (1937) Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor. Arch Microbiol 8:440–457

    CAS  Google Scholar 

  • Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439

    Article  CAS  Google Scholar 

  • Yokoi H, Mori M, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20:895–899

    Article  CAS  Google Scholar 

  • Yoon JH, Sim SJ, Kim MS, Park TH (2002) High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int J Hydrog Energy 27:1265–1270

    Article  CAS  Google Scholar 

  • Zhao X, Xing D, Liu B, Lu L, Zhao J, Ren N (2012) The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. Int J Hydrog Energy 37:1711–1717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Kaushik, A., Sharma, M. (2017). Exploiting Biohydrogen Pathways of Cyanobacteria and Green Algae: An Industrial Production Approach. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_5

Download citation

Publish with us

Policies and ethics