Skip to main content

Trends and Challenges in Biohydrogen Production from Agricultural Waste

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

Over the past decade, increasing interest has been given to anaerobic fermentative processes for hydrogen production and other high-value by-products. The development of technologies dedicated to energy production from biomass has recently emerged. Indeed, agricultural residues, such as agricultural waste or energy crops, have become economically and technologically attractive for their low-cost and carbohydrate-rich substrates. Moreover, dark fermentation methods present an ingenious solution to process them. However, low hydrogen production yields are often reported because of their rather low biodegradability due to the presence of complex polymers recalcitrant to biodegradation, such as lignocellulose. Hydrogen potentials range between less than 1 ml H2.g−1 of dry matter for complex lignocellulosic residues and 240 ml H2.g−1 of dry matter for purified polymers such as starch. Many solutions for increasing hydrogen potential have been proposed such as microbial consortium selection, substrate pretreatment and process parameter optimisation. Consequently, higher hydrogen yields have recently been obtained, reaching 150 ml H2.gTVS −1 for pretreated rice straw. Nevertheless, the only manner to reach viable industrialisation of dark fermentation processes would be to combine this process with other biological energy production techniques such as photofermentation, bioelectrochemically assisted hydrogen production and anaerobic digestion, in a so-called environmental biorefinery concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akutsu Y, Li Y, Tandukar M, Kubota K, Harada H (2008) Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrog Energy 33:6541–6548. doi:10.1016/j.ijhydene.2008.08.038

    Article  CAS  Google Scholar 

  • Akutsu Y, Li Y-Y, Harada H, Yu H-Q (2009) Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrog Energy 34:2558–2566. doi:10.1016/j.ijhydene.2009.01.048

    Article  CAS  Google Scholar 

  • Alavandi SK, Agrawal AK (2008) Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner. Int J Hydrog Energy 33:1407–1415. doi:10.1016/j.ijhydene.2007.12.005

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl Biochem Biotechnol 109:95–105. doi:10.1385/ABAB:109:1–3:95

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. doi:10.1016/j.biortech.2006.11.048

    Article  CAS  Google Scholar 

  • Azbar N, Speece RE (2001) Two-phase, two-stage, and single-stage anaerobic process comparison. J Environ Eng 127:240–248. doi:10.1061/(ASCE)0733-9372(2001)127:3(240)

    Article  CAS  Google Scholar 

  • Bruni E (2010) Improved anaerobic digestion of energy crops and agricultural residues. Ph.D. thesis, Technical University of Denmark. http://orbit.dtu.dk/fedora/objects/orbit:82849/datastreams/file_5116515/content

  • Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrog Energy 37:11549–11555, doi: http://dx.doi.org/10.1016/j.ijhydene.2012.03.065

    Article  CAS  Google Scholar 

  • Chen C-Y, Lu W-B, Liu C-H, Chang J-S (2008) Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour Technol 99:3609–3616. doi:10.1016/j.biortech.2007.07.037

    Article  CAS  Google Scholar 

  • Chen C-C, Chuang Y-S, Lin C-Y, Lay C-H, Sen B (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrog Energy 37:15540–15546. doi:10.1016/j.ijhydene.2012.01.036

    Article  CAS  Google Scholar 

  • Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrog Energy 35:3029–3035. doi:10.1016/j.ijhydene.2009.07.012

    Article  CAS  Google Scholar 

  • Cheng J, Su H, Zhou J, Song W, Cen K (2011a) Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int J Hydrog Energy 36:2093–2101. doi:10.1016/j.ijhydene.2010.11.021

    Article  CAS  Google Scholar 

  • Cheng J, Zhang M, Song W, Xia A, Zhou J, Cen K (2011b) Cogeneration of hydrogen and methane from Arthrospira maxima biomass with bacteria domestication and enzymatic hydrolysis. Int J Hydrog Energy 36:1474–1481. doi:10.1016/j.ijhydene.2010.11.009

    Article  CAS  Google Scholar 

  • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287. doi:10.1016/j.ijhydene.2009.02.010

    Article  CAS  Google Scholar 

  • Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. N Biotechnol 31:179–184. doi:10.1016/j.nbt.2013.12.004

    Article  CAS  Google Scholar 

  • Chu Y, Wei Y, Yuan X, Shi X (2011) Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresour Technol 102:3805–3809. doi:10.1016/j.biortech.2010.11.092

    Article  CAS  Google Scholar 

  • Claassen PAM, Vrije T De, Budde MAW (2004) Biological hydrogen production from sweet sorghum by thermophilic bacteria. 2nd world conference on biomass for energy, Industry and Climate Protection, pp 1522–1525

    Google Scholar 

  • Claassen AM, Budde MAW, Van Niel EWJ, De Vrije T (2005) Utilization of biomass for hydrogen fermentation. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells: renewable energy from biomass fermentation. IWA Publisihing, London, pp 221–230

    Google Scholar 

  • Claassen PAM, De Vrije T, Urbaniec K (2009) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. Chem Eng Trans 18:333–338. doi:10.3303/CET0918053

    Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913. doi:10.1007/s00253-008-1522-2

    Article  CAS  Google Scholar 

  • Concetti S, Chiariotti A, Patriarca C, Marone A, Contò G, Calì M, Signorini A (2006) Biohydrogen production from buffalo manure codigested with agroindustrial by-products in an anaerobic reactor.

    Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van Den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. doi:10.1038/387253a0

    Article  CAS  Google Scholar 

  • Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrog Energy 37:1120–1124. doi:10.1016/j.ijhydene.2011.02.078

    Article  CAS  Google Scholar 

  • Dareioti MA, Kornaros M (2014) Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol 167:407–415. doi:10.1016/j.biortech.2014.06.045

    Article  CAS  Google Scholar 

  • Dareioti MA, Vavouraki AI, Kornaros M (2014) Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Bioresour Technol 162:218–227. doi:10.1016/j.biortech.2014.03.149

    Article  CAS  Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357. doi:10.1016/j.ijhydene.2008.12.013

    Article  CAS  Google Scholar 

  • Das D, Veziroä TN (2001) Hydrogen production by biological processes : a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Datar R, Huang J, Maness P, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939. doi:10.1016/j.ijhydene.2006.09.027

    Article  CAS  Google Scholar 

  • De Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane & bio-hydrogen, Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Fundation, The Hague, pp 103–123

    Google Scholar 

  • Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755. doi:10.1002/jctb.630

    Article  CAS  Google Scholar 

  • Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrog Energy 34:812–820. doi:10.1016/j.ijhydene.2008.11.031

    Article  CAS  Google Scholar 

  • Erica M (2012) Anaerobic digestion. Fuel cells waste-to-energy chain. Springer, London, pp 47–63

    Google Scholar 

  • Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biol Technol. doi:10.1007/s11157-012-9277-8

    Google Scholar 

  • Fan Y-T, Zhang Y-H, Zhang S-F, Hou H-W, Ren B-Z (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505. doi:10.1016/j.biortech.2005.02.049

    Article  CAS  Google Scholar 

  • FAO (2011) Global food losses and food waste – extent, causes and prevention. FAO, Rome

    Google Scholar 

  • FAO (2013) FAO statistical yearbook 2013 : world food and agriculture. FAO, Rome

    Google Scholar 

  • Gattrell M, Gupta N, Co A (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48:1255–1265. doi:10.1016/j.enconman.2006.09.019

    Article  CAS  Google Scholar 

  • Gilroyed BH, Li C, Hao X, Chu A, McAllister TA (2010) Biohydrogen production from specified risk materials co-digested with cattle manure. Int J Hydrog Energy 35:1099–1105. doi:10.1016/j.ijhydene.2009.11.072

    Article  CAS  Google Scholar 

  • Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627. doi:10.1016/j.biortech.2011.03.055

    Article  CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673. doi:10.1016/j.ijhydene.2010.03.008

    Article  CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrog Energy 39:7476–7485. doi:10.1016/j.ijhydene.2013.08.079

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energy 34:7379–7389. doi:10.1016/j.ijhydene.2008.12.080

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. doi:10.1016/j.tibtech.2009.02.004

    Article  CAS  Google Scholar 

  • Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37:13200–13208. doi:10.1016/j.ijhydene.2012.03.073

    Article  CAS  Google Scholar 

  • Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184. doi:10.1016/j.ijhydene.2006.08.014

    Article  CAS  Google Scholar 

  • Hubbard RK, Lowrance RR (1998) Management of dairy cattle manure. Agric. Uses Munic. Anim. Ind. Byprod. pp 91–102

    Google Scholar 

  • Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670. doi:10.1016/j.ijhydene.2009.02.082

    Article  CAS  Google Scholar 

  • Kadier A, Simayi Y, Sahaid M, Abdeshahian P, Abdul A (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472. doi:10.1016/j.renene.2014.05.052

    Article  CAS  Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568. doi:10.1016/j.biortech.2008.11.011

    Article  CAS  Google Scholar 

  • Ke S, Shi Z, Fang HHP (2005) Applications of two-phase anaerobic degradation in industrial wastewater treatment Shuizhou Ke * and Zhou Shi. Int J Environ Pollut 23:65–80

    Article  CAS  Google Scholar 

  • Koku H, Eroglu I, Gündpuz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329. doi:10.1016/S0360-3199(02)00127-1

    Article  CAS  Google Scholar 

  • Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035. doi:10.1016/j.biortech.2010.12.009

    Article  CAS  Google Scholar 

  • Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy 33:1168–1174. doi:10.1016/j.biombioe.2009.05.001

    Article  CAS  Google Scholar 

  • Kyazze G, Dinsdale R, Hawkes FR, Guwy AJ, Premier GC, Donnison IS (2008) Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 99:8833–8839. doi:10.1016/j.biortech.2008.04.047

    Article  CAS  Google Scholar 

  • Lakaniemi A-M, Koskinen PEP, Nevatalo LM, Kaksonen AH, Puhakka JA (2011) Biogenic hydrogen and methane production from reed canary grass. Biomass Bioenergy 35:773–780. doi:10.1016/j.biombioe.2010.10.032

    Article  CAS  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210. doi:10.1016/j.ijhydene.2009.05.112

    Article  CAS  Google Scholar 

  • Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C, Umetsu K (2012) Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257. doi:10.1016/j.biortech.2012.01.102

    Article  CAS  Google Scholar 

  • Lee C (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27:1309–1313. doi:10.1016/S0360-3199(02)00102-7

    Article  CAS  Google Scholar 

  • Levin D (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185. doi:10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  • Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660. doi:10.1016/j.biortech.2006.02.027

    Article  CAS  Google Scholar 

  • Li D, Chen H (2007) Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrog Energy 32:1742–1748. doi:10.1016/j.ijhydene.2006.12.011

    Article  CAS  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. doi:10.1080/10643380600729071

    Article  CAS  Google Scholar 

  • Li X-H, Liang D-W, Bai Y-X, Fan Y-T, Hou H-W (2014) Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrog Energy 39:8977–8982. doi:10.1016/j.ijhydene.2014.03.065

    Article  CAS  Google Scholar 

  • Liu D, Angelidaki I, Zeng R, Min B (2008) Bio-hydrogen production by dark fermentation from organic wastes and residues

    Google Scholar 

  • Liu Z, Zhang C, Lu Y, Wu X, Wang L, Wang L, Han B, Xing X-H (2013) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303. doi:10.1016/j.biortech.2012.10.027

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518. doi:10.1016/j.tim.2006.10.003

    Article  CAS  Google Scholar 

  • Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24:3055–3060. doi:10.1016/j.bios.2009.03.024

    Article  CAS  Google Scholar 

  • Marone A (2012) Bio-hydrogen production by self fermentation of vegetable waste: from screening of microbial diversity to bioaugmentation of indigenous fermentative communities. Ph.D. thesis, Università degli Studi della Tuscia, Archivio delle tesi di dottorato di ricerca. http://hdl.handle.net/2067/2529

  • Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13. doi:10.1016/j.renene.2014.01.013

  • Marone A, Varrone C, Fiocchetti F, Giussani B, Izzo G, Mentuccia L, Rosa S, Signorini A (2015) Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int J Hydrog Energy 40(1):209–218

    Article  CAS  Google Scholar 

  • Massanet-Nicolau J, Dinsdale R, Guwy A, Shipley G (2013) Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresour Technol 129:561–567. doi:10.1016/j.biortech.2012.11.102

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. doi:10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer J-P, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225. doi:10.1021/es303132t

    Article  CAS  Google Scholar 

  • Monlau F, Aemig Q, Trably E (2013a) Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. Int J Hydrog Energy 38:12273–12282

    Article  CAS  Google Scholar 

  • Monlau F, Barakat A, Trably E, Dumas C, Steyer J-P, Carrère H (2013b) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322. doi:10.1080/10643389.2011.604258

    Article  CAS  Google Scholar 

  • Monlau F, Trably E, Barakat A, Hamelin J, Steyer J-P, Carrere H (2013c) Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ Sci Technol. doi:10.1021/es402863v

    Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer J-P, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. doi:10.1016/j.biotechadv.2014.04.007

    Article  CAS  Google Scholar 

  • Monlau F, Kaparaju P, Trably E, Steyer JP, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385. doi:10.1016/j.cej.2014.08.108

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi:10.1016/j.biortech.2003.10.005

    Article  CAS  Google Scholar 

  • Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrog Energy 36:411–420. doi:10.1016/j.ijhydene.2010.09.073

    Article  CAS  Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423. doi:10.1007/s00253-009-2003-y

    Article  CAS  Google Scholar 

  • Nissilä ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy 67:145–159. doi:10.1016/j.biombioe.2014.04.035

    Article  CAS  Google Scholar 

  • Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32

    CAS  Google Scholar 

  • Ozkan L, Erguder TH, Demirer GN (2011) Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrog Energy 36:382–389. doi:10.1016/j.ijhydene.2010.10.006

    Article  CAS  Google Scholar 

  • Oztekin R, Kapdan IK, Kargi F, Argun H (2008) Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. Int J Hydrog Energy 33:4083–4090, doi: http://dx.doi.org/10.1016/j.ijhydene.2008.05.052

    Article  CAS  Google Scholar 

  • Pakarinen O (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrog Energy 33:594–601. doi:10.1016/j.ijhydene.2007.10.008

    Article  CAS  Google Scholar 

  • Pakarinen OM, Tähti HP, Rintala JA (2009) One-stage H2 and CH4 and two-stage H2+CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenergy 33:1419–1427. doi:10.1016/j.biombioe.2009.06.006

    Article  CAS  Google Scholar 

  • Pan C, Fan Y, Hou H (2008) Fermentative production of hydrogen from wheat bran by mixed anaerobic cultures. Ind Eng Chem Res 47:5812–5818. doi:10.1021/ie701789c

    Article  CAS  Google Scholar 

  • Perera KRJ, Nirmalakhandan N (2010) Enhancing fermentative hydrogen production from sucrose. Bioresour Technol 101:9137–9143. doi:10.1016/j.biortech.2010.06.145

    Article  CAS  Google Scholar 

  • Perera KRJ, Nirmalakhandan N (2011) Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Bioresour Technol 102:8688–8695. doi:10.1016/j.biortech.2011.02.044

    Article  CAS  Google Scholar 

  • Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 64:1–10. doi:10.1016/j.biombioe.2014.03.057

    Article  CAS  Google Scholar 

  • Prakasham RS, Sathish T, Brahmaiah P, Subba Rao C, Sreenivas Rao R, Hobbs PJ (2009) Biohydrogen production from renewable agri-waste blend: optimization using mixer design. Int J Hydrog Energy 34:6143–6148. doi:10.1016/j.ijhydene.2009.06.016

    Article  CAS  Google Scholar 

  • Prakasham RS, Brahmaiah P, Nagaiah D, Rao PS, Reddy BVS, Rao RS, Hobbs PJ (2012) Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. Int J Hydrog Energy 37:3186–3190. doi:10.1016/j.ijhydene.2011.11.082

    Article  CAS  Google Scholar 

  • Quéméneur M, Bittel M, Trably E, Dumas C, Fourage L, Ravot G, Steyer J-P, Carrère H (2012) Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrog Energy 37:10639–10647. doi:10.1016/j.ijhydene.2012.04.083

    Article  CAS  Google Scholar 

  • Rabelo SC, Maciel Filho R, Costa AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 153:139–150. doi:10.1007/s12010-008-8433-7

    Article  CAS  Google Scholar 

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060. doi:10.1016/j.biotechadv.2009.05.007

    Article  CAS  Google Scholar 

  • Rozendal R, Hamelers H, Euverink G, Metz S, Buisman C (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640. doi:10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  • Saraphirom P, Reungsang A (2011) Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). Int J Hydrog Energy 36:8765–8773. doi:10.1016/j.ijhydene.2010.08.058

    Article  CAS  Google Scholar 

  • Sarma SJ, Brar SK, Le Bihan Y, Buelna G (2013) Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation. Bioprocess Biosyst Eng 36:1–10. doi:10.1007/s00449-012-0755-8

    Article  CAS  Google Scholar 

  • Shanmugam SR, Chaganti SR, Lalman JA, Heath D (2014) Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR. Int J Hydrog Energy 39:10003–10015. doi:10.1016/j.ijhydene.2014.04.115

    Article  CAS  Google Scholar 

  • Shi X, Song H, Wang C, Tang R, Huang Z, Gao T, Xie J (2010) Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int J Energy Res 34:662–672. doi:10.1002/er1570

    CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrog Energy 34:1780–1786. doi:10.1016/j.ijhydene.2008.12.045

    Article  CAS  Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588. doi:10.1016/j.biortech.2011.03.102

    Article  CAS  Google Scholar 

  • Ullery ML, Logan BE (2015) Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int J Hydrog Energy 40:6782–6791. doi:10.1016/j.ijhydene.2015.03.101

    Article  CAS  Google Scholar 

  • Urbaniec K, Markowski M, Budek A (2014) Studies on the energy demand of two-stage fermentative hydrogen production from biomass in a factory equipped with fuel-cell based power plant. Int J Hydrog Energy 39:7468–7475. doi:10.1016/j.ijhydene.2014.01.096

    Article  CAS  Google Scholar 

  • Varrone C, Giussani B, Izzo G, Massini G, Marone A, Signorini A, Wang A (2012) Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int J Hydrog Energy 37:16479–16488. doi:10.1016/j.ijhydene.2012.02.106

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Goud RK, Sarma PN (2009) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresour Technol 100:3061–3068. doi:10.1016/j.biortech.2008.12.059

    Article  CAS  Google Scholar 

  • Vollmer H, Scholz W (1985) Two-step biological treatment of slaughterhouse effluents. Flaischwirtschaft 65:1310, 1312–1316, 1364

    Google Scholar 

  • Wang A, Sun D, Cao G, Wang H, Ren N, Wu W-M, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143. doi:10.1016/j.biortech.2010.10.137

    Article  CAS  Google Scholar 

  • Wang K-S, Chen J-H, Huang Y-H, Huang S-L (2013) Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure. Int J Hydrog Energy 38:45–53. doi:10.1016/j.ijhydene.2012.03.155

    Article  CAS  Google Scholar 

  • Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108–117. doi:10.1016/j.apenergy.2014.07.003

    Article  CAS  Google Scholar 

  • Wu X, Yao W, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35:6592–6599. doi:10.1016/j.ijhydene.2010.03.097

    Article  CAS  Google Scholar 

  • Wu J, Ein-Mozaffari F, Upreti S (2013a) Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol 144:344–349. doi:10.1016/j.biortech.2013.07.001

    Article  CAS  Google Scholar 

  • Wu J, Upreti S, Ein-Mozaffari F (2013b) Ozone pretreatment of wheat straw for enhanced biohydrogen production. Int J Hydrog Energy 38:10270–10276, doi: http://dx.doi.org/10.1016/j.ijhydene.2013.06.063

    Article  CAS  Google Scholar 

  • Wu X, Lin H, Zhu J (2013c) Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. Bioresour Technol 136:351–359. doi:10.1016/j.biortech.2013.02.109

    Article  CAS  Google Scholar 

  • Xing Y, Li Z, Fan Y, Hou H (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int 17:392–399. doi:10.1007/s11356-009-0187-4

    Article  CAS  Google Scholar 

  • Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresour Technol 101:2049–2052. doi:10.1016/j.biortech.2009.10.078

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrog Energy 36:3465–3470. doi:10.1016/j.ijhydene.2010.12.018

    Article  CAS  Google Scholar 

  • Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483. doi:10.1007/s00253-006-0647-4

    Article  CAS  Google Scholar 

  • Zhu J, Li Y, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100:5472–5477. doi:10.1016/j.biortech.2008.11.045

    Article  CAS  Google Scholar 

  • Zhu Z, Shi J, Zhou Z, Hu F, Bao J (2010) Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids. Process Biochem 45:1894–1898. doi:10.1016/j.procbio.2010.08.017

    Article  CAS  Google Scholar 

  • Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463, doi: http://dx.doi.org/10.1016/j.biombioe.2009.06.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Marone’s postdoctoral program was funded by the Marie Curie Intra European Fellowship WASTE2BIOHY (FP7-MC- IEF-326974) under the 7th Framework Programme of the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Trably .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Chatellard, L., Marone, A., Carrère, H., Trably, E. (2017). Trends and Challenges in Biohydrogen Production from Agricultural Waste. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_4

Download citation

Publish with us

Policies and ethics