Advertisement

Trends and Challenges in Biohydrogen Production from Agricultural Waste

  • Lucile Chatellard
  • Antonella Marone
  • Hélène Carrère
  • Eric Trably

Abstract

Over the past decade, increasing interest has been given to anaerobic fermentative processes for hydrogen production and other high-value by-products. The development of technologies dedicated to energy production from biomass has recently emerged. Indeed, agricultural residues, such as agricultural waste or energy crops, have become economically and technologically attractive for their low-cost and carbohydrate-rich substrates. Moreover, dark fermentation methods present an ingenious solution to process them. However, low hydrogen production yields are often reported because of their rather low biodegradability due to the presence of complex polymers recalcitrant to biodegradation, such as lignocellulose. Hydrogen potentials range between less than 1 ml H2.g−1 of dry matter for complex lignocellulosic residues and 240 ml H2.g−1 of dry matter for purified polymers such as starch. Many solutions for increasing hydrogen potential have been proposed such as microbial consortium selection, substrate pretreatment and process parameter optimisation. Consequently, higher hydrogen yields have recently been obtained, reaching 150 ml H2.gTVS−1 for pretreated rice straw. Nevertheless, the only manner to reach viable industrialisation of dark fermentation processes would be to combine this process with other biological energy production techniques such as photofermentation, bioelectrochemically assisted hydrogen production and anaerobic digestion, in a so-called environmental biorefinery concept.

Keywords

Chemical Oxygen Demand Hydrogen Production Corn Stover Volatile Solid Sweet Sorghum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A. Marone’s postdoctoral program was funded by the Marie Curie Intra European Fellowship WASTE2BIOHY (FP7-MC- IEF-326974) under the 7th Framework Programme of the European Community.

References

  1. Akutsu Y, Li Y, Tandukar M, Kubota K, Harada H (2008) Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrog Energy 33:6541–6548. doi: 10.1016/j.ijhydene.2008.08.038 CrossRefGoogle Scholar
  2. Akutsu Y, Li Y-Y, Harada H, Yu H-Q (2009) Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrog Energy 34:2558–2566. doi: 10.1016/j.ijhydene.2009.01.048 CrossRefGoogle Scholar
  3. Alavandi SK, Agrawal AK (2008) Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner. Int J Hydrog Energy 33:1407–1415. doi: 10.1016/j.ijhydene.2007.12.005 CrossRefGoogle Scholar
  4. Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl Biochem Biotechnol 109:95–105. doi: 10.1385/ABAB:109:1–3:95 CrossRefGoogle Scholar
  5. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. doi: 10.1016/j.biortech.2006.11.048 CrossRefGoogle Scholar
  6. Azbar N, Speece RE (2001) Two-phase, two-stage, and single-stage anaerobic process comparison. J Environ Eng 127:240–248. doi: 10.1061/(ASCE)0733-9372(2001)127:3(240) CrossRefGoogle Scholar
  7. Bruni E (2010) Improved anaerobic digestion of energy crops and agricultural residues. Ph.D. thesis, Technical University of Denmark. http://orbit.dtu.dk/fedora/objects/orbit:82849/datastreams/file_5116515/content
  8. Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrog Energy 37:11549–11555, doi: http://dx.doi.org/10.1016/j.ijhydene.2012.03.065 CrossRefGoogle Scholar
  9. Chen C-Y, Lu W-B, Liu C-H, Chang J-S (2008) Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour Technol 99:3609–3616. doi: 10.1016/j.biortech.2007.07.037 CrossRefGoogle Scholar
  10. Chen C-C, Chuang Y-S, Lin C-Y, Lay C-H, Sen B (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrog Energy 37:15540–15546. doi: 10.1016/j.ijhydene.2012.01.036 CrossRefGoogle Scholar
  11. Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrog Energy 35:3029–3035. doi: 10.1016/j.ijhydene.2009.07.012 CrossRefGoogle Scholar
  12. Cheng J, Su H, Zhou J, Song W, Cen K (2011a) Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int J Hydrog Energy 36:2093–2101. doi: 10.1016/j.ijhydene.2010.11.021 CrossRefGoogle Scholar
  13. Cheng J, Zhang M, Song W, Xia A, Zhou J, Cen K (2011b) Cogeneration of hydrogen and methane from Arthrospira maxima biomass with bacteria domestication and enzymatic hydrolysis. Int J Hydrog Energy 36:1474–1481. doi: 10.1016/j.ijhydene.2010.11.009 CrossRefGoogle Scholar
  14. Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287. doi: 10.1016/j.ijhydene.2009.02.010 CrossRefGoogle Scholar
  15. Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. N Biotechnol 31:179–184. doi: 10.1016/j.nbt.2013.12.004 CrossRefGoogle Scholar
  16. Chu Y, Wei Y, Yuan X, Shi X (2011) Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresour Technol 102:3805–3809. doi: 10.1016/j.biortech.2010.11.092 CrossRefGoogle Scholar
  17. Claassen PAM, Vrije T De, Budde MAW (2004) Biological hydrogen production from sweet sorghum by thermophilic bacteria. 2nd world conference on biomass for energy, Industry and Climate Protection, pp 1522–1525Google Scholar
  18. Claassen AM, Budde MAW, Van Niel EWJ, De Vrije T (2005) Utilization of biomass for hydrogen fermentation. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells: renewable energy from biomass fermentation. IWA Publisihing, London, pp 221–230Google Scholar
  19. Claassen PAM, De Vrije T, Urbaniec K (2009) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. Chem Eng Trans 18:333–338. doi: 10.3303/CET0918053 Google Scholar
  20. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913. doi: 10.1007/s00253-008-1522-2 CrossRefGoogle Scholar
  21. Concetti S, Chiariotti A, Patriarca C, Marone A, Contò G, Calì M, Signorini A (2006) Biohydrogen production from buffalo manure codigested with agroindustrial by-products in an anaerobic reactor.Google Scholar
  22. Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van Den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. doi: 10.1038/387253a0 CrossRefGoogle Scholar
  23. Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrog Energy 37:1120–1124. doi: 10.1016/j.ijhydene.2011.02.078 CrossRefGoogle Scholar
  24. Dareioti MA, Kornaros M (2014) Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol 167:407–415. doi: 10.1016/j.biortech.2014.06.045 CrossRefGoogle Scholar
  25. Dareioti MA, Vavouraki AI, Kornaros M (2014) Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Bioresour Technol 162:218–227. doi: 10.1016/j.biortech.2014.03.149 CrossRefGoogle Scholar
  26. Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357. doi: 10.1016/j.ijhydene.2008.12.013 CrossRefGoogle Scholar
  27. Das D, Veziroä TN (2001) Hydrogen production by biological processes : a survey of literature. Int J Hydrog Energy 26:13–28CrossRefGoogle Scholar
  28. Datar R, Huang J, Maness P, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939. doi: 10.1016/j.ijhydene.2006.09.027 CrossRefGoogle Scholar
  29. De Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane & bio-hydrogen, Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Fundation, The Hague, pp 103–123Google Scholar
  30. Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755. doi: 10.1002/jctb.630 CrossRefGoogle Scholar
  31. Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrog Energy 34:812–820. doi: 10.1016/j.ijhydene.2008.11.031 CrossRefGoogle Scholar
  32. Erica M (2012) Anaerobic digestion. Fuel cells waste-to-energy chain. Springer, London, pp 47–63Google Scholar
  33. Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biol Technol. doi: 10.1007/s11157-012-9277-8 Google Scholar
  34. Fan Y-T, Zhang Y-H, Zhang S-F, Hou H-W, Ren B-Z (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505. doi: 10.1016/j.biortech.2005.02.049 CrossRefGoogle Scholar
  35. FAO (2011) Global food losses and food waste – extent, causes and prevention. FAO, RomeGoogle Scholar
  36. FAO (2013) FAO statistical yearbook 2013 : world food and agriculture. FAO, RomeGoogle Scholar
  37. Gattrell M, Gupta N, Co A (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48:1255–1265. doi: 10.1016/j.enconman.2006.09.019 CrossRefGoogle Scholar
  38. Gilroyed BH, Li C, Hao X, Chu A, McAllister TA (2010) Biohydrogen production from specified risk materials co-digested with cattle manure. Int J Hydrog Energy 35:1099–1105. doi: 10.1016/j.ijhydene.2009.11.072 CrossRefGoogle Scholar
  39. Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627. doi: 10.1016/j.biortech.2011.03.055 CrossRefGoogle Scholar
  40. Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673. doi: 10.1016/j.ijhydene.2010.03.008 CrossRefGoogle Scholar
  41. Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrog Energy 39:7476–7485. doi: 10.1016/j.ijhydene.2013.08.079 CrossRefGoogle Scholar
  42. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energy 34:7379–7389. doi: 10.1016/j.ijhydene.2008.12.080 CrossRefGoogle Scholar
  43. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. doi: 10.1016/j.tibtech.2009.02.004 CrossRefGoogle Scholar
  44. Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37:13200–13208. doi: 10.1016/j.ijhydene.2012.03.073 CrossRefGoogle Scholar
  45. Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184. doi: 10.1016/j.ijhydene.2006.08.014 CrossRefGoogle Scholar
  46. Hubbard RK, Lowrance RR (1998) Management of dairy cattle manure. Agric. Uses Munic. Anim. Ind. Byprod. pp 91–102Google Scholar
  47. Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670. doi: 10.1016/j.ijhydene.2009.02.082 CrossRefGoogle Scholar
  48. Kadier A, Simayi Y, Sahaid M, Abdeshahian P, Abdul A (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472. doi: 10.1016/j.renene.2014.05.052 CrossRefGoogle Scholar
  49. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568. doi: 10.1016/j.biortech.2008.11.011 CrossRefGoogle Scholar
  50. Ke S, Shi Z, Fang HHP (2005) Applications of two-phase anaerobic degradation in industrial wastewater treatment Shuizhou Ke * and Zhou Shi. Int J Environ Pollut 23:65–80CrossRefGoogle Scholar
  51. Koku H, Eroglu I, Gündpuz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329. doi: 10.1016/S0360-3199(02)00127-1 CrossRefGoogle Scholar
  52. Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035. doi: 10.1016/j.biortech.2010.12.009 CrossRefGoogle Scholar
  53. Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy 33:1168–1174. doi: 10.1016/j.biombioe.2009.05.001 CrossRefGoogle Scholar
  54. Kyazze G, Dinsdale R, Hawkes FR, Guwy AJ, Premier GC, Donnison IS (2008) Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 99:8833–8839. doi: 10.1016/j.biortech.2008.04.047 CrossRefGoogle Scholar
  55. Lakaniemi A-M, Koskinen PEP, Nevatalo LM, Kaksonen AH, Puhakka JA (2011) Biogenic hydrogen and methane production from reed canary grass. Biomass Bioenergy 35:773–780. doi: 10.1016/j.biombioe.2010.10.032 CrossRefGoogle Scholar
  56. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210. doi: 10.1016/j.ijhydene.2009.05.112 CrossRefGoogle Scholar
  57. Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C, Umetsu K (2012) Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257. doi: 10.1016/j.biortech.2012.01.102 CrossRefGoogle Scholar
  58. Lee C (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27:1309–1313. doi: 10.1016/S0360-3199(02)00102-7 CrossRefGoogle Scholar
  59. Levin D (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185. doi: 10.1016/S0360-3199(03)00094-6 CrossRefGoogle Scholar
  60. Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660. doi: 10.1016/j.biortech.2006.02.027 CrossRefGoogle Scholar
  61. Li D, Chen H (2007) Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrog Energy 32:1742–1748. doi: 10.1016/j.ijhydene.2006.12.011 CrossRefGoogle Scholar
  62. Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. doi: 10.1080/10643380600729071 CrossRefGoogle Scholar
  63. Li X-H, Liang D-W, Bai Y-X, Fan Y-T, Hou H-W (2014) Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrog Energy 39:8977–8982. doi: 10.1016/j.ijhydene.2014.03.065 CrossRefGoogle Scholar
  64. Liu D, Angelidaki I, Zeng R, Min B (2008) Bio-hydrogen production by dark fermentation from organic wastes and residuesGoogle Scholar
  65. Liu Z, Zhang C, Lu Y, Wu X, Wang L, Wang L, Han B, Xing X-H (2013) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303. doi: 10.1016/j.biortech.2012.10.027 CrossRefGoogle Scholar
  66. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518. doi: 10.1016/j.tim.2006.10.003 CrossRefGoogle Scholar
  67. Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24:3055–3060. doi: 10.1016/j.bios.2009.03.024 CrossRefGoogle Scholar
  68. Marone A (2012) Bio-hydrogen production by self fermentation of vegetable waste: from screening of microbial diversity to bioaugmentation of indigenous fermentative communities. Ph.D. thesis, Università degli Studi della Tuscia, Archivio delle tesi di dottorato di ricerca. http://hdl.handle.net/2067/2529
  69. Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13. doi: 10.1016/j.renene.2014.01.013
  70. Marone A, Varrone C, Fiocchetti F, Giussani B, Izzo G, Mentuccia L, Rosa S, Signorini A (2015) Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int J Hydrog Energy 40(1):209–218CrossRefGoogle Scholar
  71. Massanet-Nicolau J, Dinsdale R, Guwy A, Shipley G (2013) Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresour Technol 129:561–567. doi: 10.1016/j.biortech.2012.11.102 CrossRefGoogle Scholar
  72. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. doi: 10.1016/j.pecs.2012.02.002 CrossRefGoogle Scholar
  73. Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer J-P, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225. doi: 10.1021/es303132t CrossRefGoogle Scholar
  74. Monlau F, Aemig Q, Trably E (2013a) Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. Int J Hydrog Energy 38:12273–12282CrossRefGoogle Scholar
  75. Monlau F, Barakat A, Trably E, Dumas C, Steyer J-P, Carrère H (2013b) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322. doi: 10.1080/10643389.2011.604258 CrossRefGoogle Scholar
  76. Monlau F, Trably E, Barakat A, Hamelin J, Steyer J-P, Carrere H (2013c) Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ Sci Technol. doi: 10.1021/es402863v Google Scholar
  77. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer J-P, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. doi: 10.1016/j.biotechadv.2014.04.007 CrossRefGoogle Scholar
  78. Monlau F, Kaparaju P, Trably E, Steyer JP, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385. doi: 10.1016/j.cej.2014.08.108 CrossRefGoogle Scholar
  79. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  80. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi: 10.1016/j.biortech.2003.10.005 CrossRefGoogle Scholar
  81. Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrog Energy 36:411–420. doi: 10.1016/j.ijhydene.2010.09.073 CrossRefGoogle Scholar
  82. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423. doi: 10.1007/s00253-009-2003-y CrossRefGoogle Scholar
  83. Nissilä ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy 67:145–159. doi: 10.1016/j.biombioe.2014.04.035 CrossRefGoogle Scholar
  84. Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32Google Scholar
  85. Ozkan L, Erguder TH, Demirer GN (2011) Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrog Energy 36:382–389. doi: 10.1016/j.ijhydene.2010.10.006 CrossRefGoogle Scholar
  86. Oztekin R, Kapdan IK, Kargi F, Argun H (2008) Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. Int J Hydrog Energy 33:4083–4090, doi: http://dx.doi.org/10.1016/j.ijhydene.2008.05.052 CrossRefGoogle Scholar
  87. Pakarinen O (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrog Energy 33:594–601. doi: 10.1016/j.ijhydene.2007.10.008 CrossRefGoogle Scholar
  88. Pakarinen OM, Tähti HP, Rintala JA (2009) One-stage H2 and CH4 and two-stage H2+CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenergy 33:1419–1427. doi: 10.1016/j.biombioe.2009.06.006 CrossRefGoogle Scholar
  89. Pan C, Fan Y, Hou H (2008) Fermentative production of hydrogen from wheat bran by mixed anaerobic cultures. Ind Eng Chem Res 47:5812–5818. doi: 10.1021/ie701789c CrossRefGoogle Scholar
  90. Perera KRJ, Nirmalakhandan N (2010) Enhancing fermentative hydrogen production from sucrose. Bioresour Technol 101:9137–9143. doi: 10.1016/j.biortech.2010.06.145 CrossRefGoogle Scholar
  91. Perera KRJ, Nirmalakhandan N (2011) Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Bioresour Technol 102:8688–8695. doi: 10.1016/j.biortech.2011.02.044 CrossRefGoogle Scholar
  92. Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 64:1–10. doi: 10.1016/j.biombioe.2014.03.057 CrossRefGoogle Scholar
  93. Prakasham RS, Sathish T, Brahmaiah P, Subba Rao C, Sreenivas Rao R, Hobbs PJ (2009) Biohydrogen production from renewable agri-waste blend: optimization using mixer design. Int J Hydrog Energy 34:6143–6148. doi: 10.1016/j.ijhydene.2009.06.016 CrossRefGoogle Scholar
  94. Prakasham RS, Brahmaiah P, Nagaiah D, Rao PS, Reddy BVS, Rao RS, Hobbs PJ (2012) Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. Int J Hydrog Energy 37:3186–3190. doi: 10.1016/j.ijhydene.2011.11.082 CrossRefGoogle Scholar
  95. Quéméneur M, Bittel M, Trably E, Dumas C, Fourage L, Ravot G, Steyer J-P, Carrère H (2012) Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrog Energy 37:10639–10647. doi: 10.1016/j.ijhydene.2012.04.083 CrossRefGoogle Scholar
  96. Rabelo SC, Maciel Filho R, Costa AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 153:139–150. doi: 10.1007/s12010-008-8433-7 CrossRefGoogle Scholar
  97. Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060. doi: 10.1016/j.biotechadv.2009.05.007 CrossRefGoogle Scholar
  98. Rozendal R, Hamelers H, Euverink G, Metz S, Buisman C (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640. doi: 10.1016/j.ijhydene.2005.12.006 CrossRefGoogle Scholar
  99. Saraphirom P, Reungsang A (2011) Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). Int J Hydrog Energy 36:8765–8773. doi: 10.1016/j.ijhydene.2010.08.058 CrossRefGoogle Scholar
  100. Sarma SJ, Brar SK, Le Bihan Y, Buelna G (2013) Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation. Bioprocess Biosyst Eng 36:1–10. doi: 10.1007/s00449-012-0755-8 CrossRefGoogle Scholar
  101. Shanmugam SR, Chaganti SR, Lalman JA, Heath D (2014) Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR. Int J Hydrog Energy 39:10003–10015. doi: 10.1016/j.ijhydene.2014.04.115 CrossRefGoogle Scholar
  102. Shi X, Song H, Wang C, Tang R, Huang Z, Gao T, Xie J (2010) Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int J Energy Res 34:662–672. doi: 10.1002/er1570 Google Scholar
  103. Su H, Cheng J, Zhou J, Song W, Cen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrog Energy 34:1780–1786. doi: 10.1016/j.ijhydene.2008.12.045 CrossRefGoogle Scholar
  104. Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588. doi: 10.1016/j.biortech.2011.03.102 CrossRefGoogle Scholar
  105. Ullery ML, Logan BE (2015) Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int J Hydrog Energy 40:6782–6791. doi: 10.1016/j.ijhydene.2015.03.101 CrossRefGoogle Scholar
  106. Urbaniec K, Markowski M, Budek A (2014) Studies on the energy demand of two-stage fermentative hydrogen production from biomass in a factory equipped with fuel-cell based power plant. Int J Hydrog Energy 39:7468–7475. doi: 10.1016/j.ijhydene.2014.01.096 CrossRefGoogle Scholar
  107. Varrone C, Giussani B, Izzo G, Massini G, Marone A, Signorini A, Wang A (2012) Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int J Hydrog Energy 37:16479–16488. doi: 10.1016/j.ijhydene.2012.02.106 CrossRefGoogle Scholar
  108. Venkata Mohan S, Mohanakrishna G, Goud RK, Sarma PN (2009) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresour Technol 100:3061–3068. doi: 10.1016/j.biortech.2008.12.059 CrossRefGoogle Scholar
  109. Vollmer H, Scholz W (1985) Two-step biological treatment of slaughterhouse effluents. Flaischwirtschaft 65:1310, 1312–1316, 1364Google Scholar
  110. Wang A, Sun D, Cao G, Wang H, Ren N, Wu W-M, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143. doi: 10.1016/j.biortech.2010.10.137 CrossRefGoogle Scholar
  111. Wang K-S, Chen J-H, Huang Y-H, Huang S-L (2013) Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure. Int J Hydrog Energy 38:45–53. doi: 10.1016/j.ijhydene.2012.03.155 CrossRefGoogle Scholar
  112. Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108–117. doi: 10.1016/j.apenergy.2014.07.003 CrossRefGoogle Scholar
  113. Wu X, Yao W, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35:6592–6599. doi: 10.1016/j.ijhydene.2010.03.097 CrossRefGoogle Scholar
  114. Wu J, Ein-Mozaffari F, Upreti S (2013a) Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol 144:344–349. doi: 10.1016/j.biortech.2013.07.001 CrossRefGoogle Scholar
  115. Wu J, Upreti S, Ein-Mozaffari F (2013b) Ozone pretreatment of wheat straw for enhanced biohydrogen production. Int J Hydrog Energy 38:10270–10276, doi: http://dx.doi.org/10.1016/j.ijhydene.2013.06.063 CrossRefGoogle Scholar
  116. Wu X, Lin H, Zhu J (2013c) Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. Bioresour Technol 136:351–359. doi: 10.1016/j.biortech.2013.02.109 CrossRefGoogle Scholar
  117. Xing Y, Li Z, Fan Y, Hou H (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int 17:392–399. doi: 10.1007/s11356-009-0187-4 CrossRefGoogle Scholar
  118. Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresour Technol 101:2049–2052. doi: 10.1016/j.biortech.2009.10.078 CrossRefGoogle Scholar
  119. Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrog Energy 36:3465–3470. doi: 10.1016/j.ijhydene.2010.12.018 CrossRefGoogle Scholar
  120. Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483. doi: 10.1007/s00253-006-0647-4 CrossRefGoogle Scholar
  121. Zhu J, Li Y, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100:5472–5477. doi: 10.1016/j.biortech.2008.11.045 CrossRefGoogle Scholar
  122. Zhu Z, Shi J, Zhou Z, Hu F, Bao J (2010) Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids. Process Biochem 45:1894–1898. doi: 10.1016/j.procbio.2010.08.017 CrossRefGoogle Scholar
  123. Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463, doi: http://dx.doi.org/10.1016/j.biombioe.2009.06.008 CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Lucile Chatellard
    • 1
  • Antonella Marone
    • 1
  • Hélène Carrère
    • 1
  • Eric Trably
    • 1
  1. 1.LBE, INRANarbonneFrance

Personalised recommendations