Skip to main content

Comparative Environmental Life Cycle Assessment of Biohydrogen Production from Biomass Resources

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

The goal of this chapter is to assess environmental impacts of biohydrogen production regarding anthropogenic climate change, emissions with an acidification impact and further impact categories by means of a life cycle approach. In conjunction with reducing the use of fossil resources, there is a need to prioritize those technologies that will provide the least impact on the environment. Thus, a variety of processes of hydrogen production derived from biomass feedstock are investigated related to environmental effects. This case study considers biohydrogen production derived from biomass sources from forestry and short rotation coppice (SRC), herbaceous biomass (i.e. wheat straw), energy crops (mainly maize and grain) and biowaste in Germany. The technology with the most promising results regarding the environmental impact is steam methane reforming (SMR) of a substrate mix from nonfood substrates compared to steam methane reforming of natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225

    Article  CAS  Google Scholar 

  • Belau T (2012) Energiepflanzen: Daten für die Planung des Energiepflanzenanbaus, KTBL-Datensammlung mit Internetangebot, 2nd edn. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt

    Google Scholar 

  • Boulamanti AK, Donida Maglio S, Giuntoli J, Agostini A (2013) Influence of different practices on biogas sustainability. Biomass Bioenergy 53:149–161

    Article  CAS  Google Scholar 

  • Boyano A, Blanco-Marigorta A, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36(4):2202–2214

    Article  CAS  Google Scholar 

  • Boyd B (2010) Hydrogen Fuel Quality for FCVs: current status of efforts at CGA, Teleconference of the national hydrogen and fuel cells codes & standards coordinating committee

    Google Scholar 

  • Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37(3):2071–2080

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 2008(33):6046–6057

    Article  Google Scholar 

  • Demirbas A (2009) Biohydrogen: for future engine fuel demands. Springer, London

    Book  Google Scholar 

  • Destatis (2012) Gross electricity production in Germany from 2010 to 2012. available at: https://www.destatis.de/EN/FactsFigures/EconomicSectors/Energy/Production/Tables/GrossElectricityProduction.html. Accessed 12 June 2013

  • DIN EN ISO 14040, Environmental management – life cycle assessment – principles and framework, German and English version EN ISO 14040, vol. 2006, Beuth Verlag, Berlin

    Google Scholar 

  • DIN EN ISO 14044, Environmental management – life cycle assessment – principles and framework. German and english version EN ISO 14044, vol. 2006, Beuth Verlag, Berlin

    Google Scholar 

  • Djomo SN, Blumberga D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresour Technol 102(3):2684–2694

    Article  CAS  Google Scholar 

  • Edwards D (2006) Memorandum: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the organophosphate pesticides, and completion of the tolerance reassessment and reregistration eligibility process for the organophosphate pesticides. US Environmental Protection Agency (EPA), Washington, DC

    Google Scholar 

  • Eni S.p.A. (2013) Hydrogen production by SCT-CPO technology, available at: http://www.eni.com/en_IT/innovation-technology/technological-focus/produzione-idrogeno/produzione-idrogeno.shtml. Accessed 14 Oct 2014

  • Erm21c Limited (2010) Straw fired biomass CHP plant: preplanning information, Skibbereen.

    Google Scholar 

  • European Commission (2012) Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources

    Google Scholar 

  • Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, Silva C (2012) Biological hydrogen production by Anabaena sp. – yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy 37(1):179–190

    Article  CAS  Google Scholar 

  • Ferreira AF, Ribeiro LA, Batista AP, Marques PASS, Nobre BP, Palavra AMF, da Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga – energy and CO2 emission and economic analyses. Bioresour Technol 138:235–244

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21

    Article  Google Scholar 

  • Gandía LM, Arzamedi G, Dieguez PM (eds) (2013) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, Burlington

    Google Scholar 

  • Gellert S (2013) Thermochemische Herstellung von Wasserstoff aus Biomasse unter besonderer Berücksichtigung der Rohgasreformierung. Dissertation, Energietechnik, Technische Universität Hamburg-Harburg, Hamburg, 2013

    Google Scholar 

  • Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, de Udo Haes H, de Bruijn H, van Duin R, Huijbregts M (2001) LCA – an operational guide to the ISO-standards: part 2b: operational annex. Universiteit Leiden, Leiden

    Google Scholar 

  • Gupta RB (ed) (2009) Hydrogen fuel: production, transport, and storage. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Hauschild MZ, Goedkoop M, Guinée JB, Heijungs R, Huijbregts MAJ, Jolliet O, Margni M, Schryver A, Humbert S, Laurent A, Sala S, Pant R (2012) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697

    Article  Google Scholar 

  • Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: Palz W (ed) Biomass for energy, industry and climate protection: Twelfth European Biomass Conference; proceedings of the international conference held in Amsterdam, the Netherlands, 17–21 June 2002. ETA; WIP, Florence/Munich

    Google Scholar 

  • IPCC (ed) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Joint Research Centre – Institute for Environment and Sustainability (2011) International reference life cycle data system (ILCD) handbook: general guide for life cycle assessment: provisions and action steps, Recommendations for Life Cycle Impact Assessment in the European context, EUR, Scientific and technical research series, vol 24571, First edition, Publications Office, Luxembourg

    Google Scholar 

  • Kabir MR, Kumar A (2011) Development of net energy ratio and emission factor for biohydrogen production pathways. Bioresour Technol 102(19):8972–8985

    Article  CAS  Google Scholar 

  • Kalinci Y, Hepbasli A, Dincer I (2012) Life cycle assessment of hydrogen production from biomass gasification systems. Int J Hydrog Energy 37(19):14026–14039

    Article  CAS  Google Scholar 

  • Kaltschmitt M (ed) (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Kaltschmitt M, Weinberg J, Stegelmeier M, Bohnenschäfer W, Gansler J, Ebert M (2012) Teilbericht B. Analyse der Erneuerbaren Energien am Wärmemarkt. In: Schultz R, Hochi J, Personn H (eds) Ökologische und ökonomische Optimierung des Wärmemarktes: Unter besonderer Berücksichtigung des Endenergiebedarfs und von Biogas/Bioerdgas, Schriftenreihe des Biogasrat e.V. Ibidem-Verlag, Stuttgart, pp 109–176

    Google Scholar 

  • Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—a life cycle assessment approach. Chem Eng Process 47(8):1261–1268

    Google Scholar 

  • Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V (KTBL) (2014) Wirtschaftlichkeitsrechner Biogas. Available at: http://daten.ktbl.de/biogas/showSubstrate.do?zustandReq=3#anwendung. Accessed 22 Oct 2014

  • Lauermann G, Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 1. Properties and occurrence. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28(5):262–271

    Article  CAS  Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33(1):279–286

    Google Scholar 

  • Markowski M, Urbaniec K, Budek A, Trafczyński M, Wukovits W, Ljunggren M, Zacchi G (2010) Estimation of energy demand of fermentation-based hydrogen production. J Clean Prod 18:S81

    Article  CAS  Google Scholar 

  • Martinez-Merino V, Gil MJ, Cornejo A (2013) Biomass sources for hydrogen production. In: Gandía LM, Arzamedi G, Dieguez PM (eds) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, Burlington, pp 87–110

    Chapter  Google Scholar 

  • Millet P, Grigoriev S (2013) Water electrolysis technologies. In: Gandía LM, Arzamedi G, Dieguez PM (eds) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, Burlington, pp 19–41

    Chapter  Google Scholar 

  • Moreno J, Dufour J (2013) Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int J Hydrog Energy 38(18):7616–7622

    Article  CAS  Google Scholar 

  • Müller-Langer F (2011) Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Hamburg, 2011

    Google Scholar 

  • Ochs D, Wukovits W, Ahrer W (2010) Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J Clean Prod 18:88–94

    Article  Google Scholar 

  • Pehnt M (2002) Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik, Forschungsbericht. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Rechtenbach D (2009) Fermentative Erzeugung von Biowasserstoff aus biogenen Roh- und Reststoffen, Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Stuttgart, 2009

    Google Scholar 

  • Roddy J (2012) Biomass and biofuel production. In: Sayigh AAM (ed) Comprehensive renewable energy, vol 5. Elsevier Science, Amsterdam

    Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts M, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Rostrup-Nielsen T (2005) Manufacture of hydrogen. Catal Today 106(1–4):293–296

    Article  CAS  Google Scholar 

  • Scheftelowitz M, Schicketanz S, Reinicke F, Beil M (2013) Stromerzeugung aus Biomasse: Zwischenbericht

    Google Scholar 

  • Schmid R (2011) Smart Grids meets green Transportation, 19.-22.6., Thessaloniki

    Google Scholar 

  • Seifert M (2010) Methodische Vorgehensweise zur Standortidentifikation und Planung der Biomassebereitstellung für Konversionsanlagen am Beispiel von Bio-SNG-Produktionsanlagen, Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Hamburg, 2010

    Google Scholar 

  • Skøtt T (2011) Straw to energy: status, technologies and innovation in Denmark 2011. Innovation Network for Biomass (INBIOM), Tjele

    Google Scholar 

  • Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory NREL, Golden

    Google Scholar 

  • Susmozas A, Iribarren D, Dufour J (2013) Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J Hydrog Energy 38(24):9961–9972

    Article  CAS  Google Scholar 

  • Swiss Centre for Life Cycle Inventories (2013) ecoinvent Version 3

    Google Scholar 

  • The European Parliament and the Council of the European Union (2009a) Directive 2009/28/EG on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, vol 2009

    Google Scholar 

  • The European Parliament and the Council of the European Union (2009b) Directive 2009/30/EG amending Directive 98/70/EC as regards the specification of petrol, diesel and gas–oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC

    Google Scholar 

  • United States Department of Energy (2013) Report of the hydrogen production expert panel: a subcommittee of the hydrogen & fuel cell technical advisory committee. U.S. Department of Energy (DOE), Washington, DC

    Google Scholar 

  • Wulf C, Kaltschmitt M (2013) Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol 150:466–475

    Article  CAS  Google Scholar 

  • Zech K, Grasman R, Oehmichen K, Kiendl I, Schmersahl R, Rönsch S, Weindorf W, Funke S, Michaelis J, Wietschel M, Seifert M, Müller-Langer F (2013) Hy-NOW: Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse

    Google Scholar 

  • Zech K, Oehmichen K, Grasemann E, Michaelis J, Funke S, Seiffert M (2015) Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution. Int J Hydrog Energy 40(15):5487–5495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Wulf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Wulf, C., Thormann, L., Kaltschmitt, M. (2017). Comparative Environmental Life Cycle Assessment of Biohydrogen Production from Biomass Resources. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_13

Download citation

Publish with us

Policies and ethics