Comparative Environmental Life Cycle Assessment of Biohydrogen Production from Biomass Resources

  • Christina WulfEmail author
  • Lisa Thormann
  • Martin Kaltschmitt


The goal of this chapter is to assess environmental impacts of biohydrogen production regarding anthropogenic climate change, emissions with an acidification impact and further impact categories by means of a life cycle approach. In conjunction with reducing the use of fossil resources, there is a need to prioritize those technologies that will provide the least impact on the environment. Thus, a variety of processes of hydrogen production derived from biomass feedstock are investigated related to environmental effects. This case study considers biohydrogen production derived from biomass sources from forestry and short rotation coppice (SRC), herbaceous biomass (i.e. wheat straw), energy crops (mainly maize and grain) and biowaste in Germany. The technology with the most promising results regarding the environmental impact is steam methane reforming (SMR) of a substrate mix from nonfood substrates compared to steam methane reforming of natural gas.


Life Cycle Assessment Wheat Straw Impact Category Human Toxicity Short Rotation Coppice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alves HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225CrossRefGoogle Scholar
  2. Belau T (2012) Energiepflanzen: Daten für die Planung des Energiepflanzenanbaus, KTBL-Datensammlung mit Internetangebot, 2nd edn. Kuratorium für Technik und Bauwesen in der Landwirtschaft, DarmstadtGoogle Scholar
  3. Boulamanti AK, Donida Maglio S, Giuntoli J, Agostini A (2013) Influence of different practices on biogas sustainability. Biomass Bioenergy 53:149–161CrossRefGoogle Scholar
  4. Boyano A, Blanco-Marigorta A, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36(4):2202–2214CrossRefGoogle Scholar
  5. Boyd B (2010) Hydrogen Fuel Quality for FCVs: current status of efforts at CGA, Teleconference of the national hydrogen and fuel cells codes & standards coordinating committeeGoogle Scholar
  6. Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37(3):2071–2080CrossRefGoogle Scholar
  7. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 2008(33):6046–6057CrossRefGoogle Scholar
  8. Demirbas A (2009) Biohydrogen: for future engine fuel demands. Springer, LondonCrossRefGoogle Scholar
  9. Destatis (2012) Gross electricity production in Germany from 2010 to 2012. available at: Accessed 12 June 2013
  10. DIN EN ISO 14040, Environmental management – life cycle assessment – principles and framework, German and English version EN ISO 14040, vol. 2006, Beuth Verlag, BerlinGoogle Scholar
  11. DIN EN ISO 14044, Environmental management – life cycle assessment – principles and framework. German and english version EN ISO 14044, vol. 2006, Beuth Verlag, BerlinGoogle Scholar
  12. Djomo SN, Blumberga D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresour Technol 102(3):2684–2694CrossRefGoogle Scholar
  13. Edwards D (2006) Memorandum: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the organophosphate pesticides, and completion of the tolerance reassessment and reregistration eligibility process for the organophosphate pesticides. US Environmental Protection Agency (EPA), Washington, DCGoogle Scholar
  14. Eni S.p.A. (2013) Hydrogen production by SCT-CPO technology, available at: Accessed 14 Oct 2014
  15. Erm21c Limited (2010) Straw fired biomass CHP plant: preplanning information, Skibbereen.Google Scholar
  16. European Commission (2012) Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sourcesGoogle Scholar
  17. Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, Silva C (2012) Biological hydrogen production by Anabaena sp. – yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy 37(1):179–190CrossRefGoogle Scholar
  18. Ferreira AF, Ribeiro LA, Batista AP, Marques PASS, Nobre BP, Palavra AMF, da Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga – energy and CO2 emission and economic analyses. Bioresour Technol 138:235–244CrossRefGoogle Scholar
  19. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21CrossRefGoogle Scholar
  20. Gandía LM, Arzamedi G, Dieguez PM (eds) (2013) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, BurlingtonGoogle Scholar
  21. Gellert S (2013) Thermochemische Herstellung von Wasserstoff aus Biomasse unter besonderer Berücksichtigung der Rohgasreformierung. Dissertation, Energietechnik, Technische Universität Hamburg-Harburg, Hamburg, 2013Google Scholar
  22. Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, de Udo Haes H, de Bruijn H, van Duin R, Huijbregts M (2001) LCA – an operational guide to the ISO-standards: part 2b: operational annex. Universiteit Leiden, LeidenGoogle Scholar
  23. Gupta RB (ed) (2009) Hydrogen fuel: production, transport, and storage. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  24. Hauschild MZ, Goedkoop M, Guinée JB, Heijungs R, Huijbregts MAJ, Jolliet O, Margni M, Schryver A, Humbert S, Laurent A, Sala S, Pant R (2012) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697CrossRefGoogle Scholar
  25. Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: Palz W (ed) Biomass for energy, industry and climate protection: Twelfth European Biomass Conference; proceedings of the international conference held in Amsterdam, the Netherlands, 17–21 June 2002. ETA; WIP, Florence/MunichGoogle Scholar
  26. IPCC (ed) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  27. Joint Research Centre – Institute for Environment and Sustainability (2011) International reference life cycle data system (ILCD) handbook: general guide for life cycle assessment: provisions and action steps, Recommendations for Life Cycle Impact Assessment in the European context, EUR, Scientific and technical research series, vol 24571, First edition, Publications Office, LuxembourgGoogle Scholar
  28. Kabir MR, Kumar A (2011) Development of net energy ratio and emission factor for biohydrogen production pathways. Bioresour Technol 102(19):8972–8985CrossRefGoogle Scholar
  29. Kalinci Y, Hepbasli A, Dincer I (2012) Life cycle assessment of hydrogen production from biomass gasification systems. Int J Hydrog Energy 37(19):14026–14039CrossRefGoogle Scholar
  30. Kaltschmitt M (ed) (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 2nd edn. Springer, HeidelbergGoogle Scholar
  31. Kaltschmitt M, Weinberg J, Stegelmeier M, Bohnenschäfer W, Gansler J, Ebert M (2012) Teilbericht B. Analyse der Erneuerbaren Energien am Wärmemarkt. In: Schultz R, Hochi J, Personn H (eds) Ökologische und ökonomische Optimierung des Wärmemarktes: Unter besonderer Berücksichtigung des Endenergiebedarfs und von Biogas/Bioerdgas, Schriftenreihe des Biogasrat e.V. Ibidem-Verlag, Stuttgart, pp 109–176Google Scholar
  32. Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—a life cycle assessment approach. Chem Eng Process 47(8):1261–1268Google Scholar
  33. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V (KTBL) (2014) Wirtschaftlichkeitsrechner Biogas. Available at: Accessed 22 Oct 2014
  34. Lauermann G, Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 1. Properties and occurrence. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  35. Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28(5):262–271CrossRefGoogle Scholar
  36. Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33(1):279–286Google Scholar
  37. Markowski M, Urbaniec K, Budek A, Trafczyński M, Wukovits W, Ljunggren M, Zacchi G (2010) Estimation of energy demand of fermentation-based hydrogen production. J Clean Prod 18:S81CrossRefGoogle Scholar
  38. Martinez-Merino V, Gil MJ, Cornejo A (2013) Biomass sources for hydrogen production. In: Gandía LM, Arzamedi G, Dieguez PM (eds) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, Burlington, pp 87–110CrossRefGoogle Scholar
  39. Millet P, Grigoriev S (2013) Water electrolysis technologies. In: Gandía LM, Arzamedi G, Dieguez PM (eds) Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier Science, Burlington, pp 19–41CrossRefGoogle Scholar
  40. Moreno J, Dufour J (2013) Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int J Hydrog Energy 38(18):7616–7622CrossRefGoogle Scholar
  41. Müller-Langer F (2011) Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Hamburg, 2011Google Scholar
  42. Ochs D, Wukovits W, Ahrer W (2010) Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J Clean Prod 18:88–94CrossRefGoogle Scholar
  43. Pehnt M (2002) Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik, Forschungsbericht. VDI-Verlag, DüsseldorfGoogle Scholar
  44. Rechtenbach D (2009) Fermentative Erzeugung von Biowasserstoff aus biogenen Roh- und Reststoffen, Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Stuttgart, 2009Google Scholar
  45. Roddy J (2012) Biomass and biofuel production. In: Sayigh AAM (ed) Comprehensive renewable energy, vol 5. Elsevier Science, AmsterdamGoogle Scholar
  46. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts M, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546CrossRefGoogle Scholar
  47. Rostrup-Nielsen T (2005) Manufacture of hydrogen. Catal Today 106(1–4):293–296CrossRefGoogle Scholar
  48. Scheftelowitz M, Schicketanz S, Reinicke F, Beil M (2013) Stromerzeugung aus Biomasse: ZwischenberichtGoogle Scholar
  49. Schmid R (2011) Smart Grids meets green Transportation, 19.-22.6., ThessalonikiGoogle Scholar
  50. Seifert M (2010) Methodische Vorgehensweise zur Standortidentifikation und Planung der Biomassebereitstellung für Konversionsanlagen am Beispiel von Bio-SNG-Produktionsanlagen, Dissertation, Umwelttechnik und Energiewirtschaft, Technische Universität Hamburg-Harburg, Hamburg, 2010Google Scholar
  51. Skøtt T (2011) Straw to energy: status, technologies and innovation in Denmark 2011. Innovation Network for Biomass (INBIOM), TjeleGoogle Scholar
  52. Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory NREL, GoldenGoogle Scholar
  53. Susmozas A, Iribarren D, Dufour J (2013) Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J Hydrog Energy 38(24):9961–9972CrossRefGoogle Scholar
  54. Swiss Centre for Life Cycle Inventories (2013) ecoinvent Version 3Google Scholar
  55. The European Parliament and the Council of the European Union (2009a) Directive 2009/28/EG on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, vol 2009Google Scholar
  56. The European Parliament and the Council of the European Union (2009b) Directive 2009/30/EG amending Directive 98/70/EC as regards the specification of petrol, diesel and gas–oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EECGoogle Scholar
  57. United States Department of Energy (2013) Report of the hydrogen production expert panel: a subcommittee of the hydrogen & fuel cell technical advisory committee. U.S. Department of Energy (DOE), Washington, DCGoogle Scholar
  58. Wulf C, Kaltschmitt M (2013) Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol 150:466–475CrossRefGoogle Scholar
  59. Zech K, Grasman R, Oehmichen K, Kiendl I, Schmersahl R, Rönsch S, Weindorf W, Funke S, Michaelis J, Wietschel M, Seifert M, Müller-Langer F (2013) Hy-NOW: Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von BiomasseGoogle Scholar
  60. Zech K, Oehmichen K, Grasemann E, Michaelis J, Funke S, Seiffert M (2015) Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution. Int J Hydrog Energy 40(15):5487–5495CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • Christina Wulf
    • 1
    • 2
    Email author
  • Lisa Thormann
    • 1
  • Martin Kaltschmitt
    • 1
  1. 1.Institute of Environmental Technology and Energy EconomicsHamburg University of TechnologyHamburgGermany
  2. 2.The Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations