Skip to main content

Biohydrogen Economy: Challenges and Prospects for Commercialization

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

Biohydrogen has several properties that project it as a potential alternative to our largely used fossil fuels. However, its production technology must overcome a number of limitations before it could successfully compete in the fuel market and be deployed on a large scale. Although the potential of microbes to produce biohydrogen has raised a lot of excitement, yet a lot needs to be done on technical, economical, policy making, and legislative fronts to make it replace the existing fossil fuels. Review of published literature suggests that the biohydrogen production system holds great promise for industrial application. In this chapter, we have attempted to elucidate the major challenges being faced for using biohydrogen on a commercial scale by making an assessment of its economics taking into account the different processes like production, storage, transportation, and delivery to the user and also assess its future commercialization perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Altmann M, Schmidt P, Wurster R, Zerta M, Zittel W (2004) Potential for hydrogen as a fuel for transport in the long term (2020 – 2030), Report EUR 21090, European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Seville, Spain.

    Google Scholar 

  • Amos WA (1998) Costs of storing and transporting hydrogen. Report by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado, U.S. Prepared under Task No. HY914041. NREL/TP-570-25106.

    Google Scholar 

  • Amos WA (2004) Updated cost analysis of photobiological hydrogen production from chlamydomonas reinhardtii green algae. Milestone completion report by National Renewable Energy Laboratory, Cole Boulevard Golden, Colorado, U.S. NREL/MP-560-35593.

    Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    Article  CAS  Google Scholar 

  • Carpetis C (1994) A technology and costs of hydrogen storage. TERI Inf Dig Energy 4(1):1–13

    Google Scholar 

  • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34(8):3277–3287

    Article  CAS  Google Scholar 

  • Cuoco A, Sgalambro G, Paolucci MD, Alessio L (1995) AIs photovoltaic hydrogen in Italy competitive with traditional fossil fuels? Energy 20(12):1303–1309

    Article  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  Google Scholar 

  • Davila- Vazquez G, Arriaga S, Alatrriste-Mondragon F, de Leon-Rodriguez A, Rosales- Colunga LM, Razo-Flores E (2008) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45

    Article  CAS  Google Scholar 

  • Davila-Vazquez G, Alatriste-Mondrago’n F, de Leo’n Rodrı’guez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrog Energy 33(19):4989–4997

    Article  CAS  Google Scholar 

  • Erog˘lu E, Gu¨ndu¨z U, Yu¨cel M, Tu¨rker L, Erog˘lu I (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrog Energy 29:163–171

    Article  Google Scholar 

  • Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21(6–7):855–862

    Article  CAS  Google Scholar 

  • Garret DE (1989) Chemical engineering economics. Von Nostrand Reinhold, New York

    Book  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hart D (1997) Hydrogen power: the commercial future of the ultimate fuel. Financial Times Energy Publishing, London

    Google Scholar 

  • Hawkes FR, Forsey H, Premier GC, Dinsdale RM, Hawkes DL, Guwy AJ, Maddy J, Cherryman S, Shine J, Auty D (2008) Fermentative production of hydrogen from a wheat flour industry co-product. Bioresour Technol 99:5020–5029

    Article  CAS  Google Scholar 

  • Hoffart MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987

    Article  Google Scholar 

  • Holmes B, Jones N (2003) Brace yourself for the end of cheap oil. New Sci 179(2406):9. https://en.wikipedia.org/wiki/Energy_density

  • Hunt RW, Zavalin A, Bhatnagar A, Chinnasamy S (2014) In: Gikonyo B (ed) Advances in biofuel production: algae and aquatic plants. Apple Academic Press, Toronto, pp 1–363

    Google Scholar 

  • Huston EL (1984) A liquid and solid storage of hydrogen. In: Proceedings of the 5th World hydrogen energy conference. Vol. 3; 15–20 Jul 1984, Toronto, Canada

    Google Scholar 

  • Hydrogen Components, Inc. (1997). Fuel Cell Store, Web page. Littleton, Colorado

    Google Scholar 

  • Johannsen TB (1993) Renewable energy: sources for fuels and electricity

    Google Scholar 

  • Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrog Energy 33(3):953–962

    Article  CAS  Google Scholar 

  • Karthic P, Joseph S (2012) Comparison and limitations of biohydrogen production processes. Res J Biotechnol 7(2):59–71

    CAS  Google Scholar 

  • Kaushik A, Mona S, Kaushik CP (2011) Integrating photobiological hydrogen production with dye-metal bioremoval from simulated textile wastewater. Bioresour Technol 102:9957–9964

    Article  CAS  Google Scholar 

  • Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. Trends: a compendium of data on global change. Carbon dioxide information analysis center. O ak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38(9):160A–167A

    Article  CAS  Google Scholar 

  • Luoma JR (2009) Report on the challenge for green energy: how to store excess electricity

    Google Scholar 

  • Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheeno PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33(Pt1):76–79

    Article  CAS  Google Scholar 

  • Miller M, Weinert J, Nicholas M (2006) Clean hydrogen for transportation applications: report California PATH Working Paper UCB-ITS-PWP-2006-5 NREL/TP-570-25106

    Google Scholar 

  • Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70:89–101

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011a) Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: optimization based on statistical model. Int Biodeterior Biodegrad 65:513–521

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011b) Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecol Eng 37:1589–1594

    Article  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011c) Biosorption of chromium(VI) by spent cyanobacterial biomass from a hydrogen fermentor using box-behnken model. Int Biodeterior Biodegrad 65:656–663

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011d) Sequestration of Co(II) from aqueous solution using immobilized biomass of Nostoc linckia waste from a hydrogen bioreactor. Desalination 276:408–415

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2013) Prolonged hydrogen production by Nostoc in photobioreactor and multi-stage use of the biological waste for column biosorption of some dyes and metals. Biomass Bioenergy 50:27–35

    Article  Google Scholar 

  • Nath K, Das D (2003) Hydrogen from biomass. Curr Sci 85(3):265–271

    CAS  Google Scholar 

  • New York State Electric & Gas (1996a) ANYSEG completes seneca lake storage project

    Google Scholar 

  • New York State Electric & Gas (1996b) ASeneca lake storage project completed

    Google Scholar 

  • New York State Electric & Gas (1996c) ANYSEG brings natural gas to New York’s North Country

    Google Scholar 

  • Oy N (1992) New hydrogen technologies project report: evaluation of techniques

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  CAS  Google Scholar 

  • Patil V (2007) The relevance of biofuels. Curr Sci 92:707

    Google Scholar 

  • Ren N, Li J, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31:2147–2157

    Article  CAS  Google Scholar 

  • Report to Congress (1995) Hydrogen: technology and policy. 95–540 SR

    Google Scholar 

  • Resnick RJ (2004) Economics of biological methods ofhydrogen production. Master’s Thesis submitted in the Massachusetts Institute of Technology, Massachusetts Ave, Cambridge

    Google Scholar 

  • Sasikala K, Ramana CV, Rao PR (1992) Photoproduction of hydrogen from the waste water of a distillery by Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 17(1):23–27

    Article  CAS  Google Scholar 

  • Sathyaprakasan P, Kannan G (2015) Economics of bio-hydrogen production. Int J Environ Sci Dev 6(5):352–356

    Article  Google Scholar 

  • Schwarz JA, Amonkwah KAG (1993) Hydrogen storage systems. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energ Rev 4:111–133

    Article  CAS  Google Scholar 

  • Taylor JB, Alderson JEA, Kalyanam KM, Lyle AB, Phillips LA (1986) A technical and economic assessment of methods for the storage of large quantities of hydrogen. Int J Hydrog Energy 11(1):5–22

    Article  CAS  Google Scholar 

  • Timmerhaus C, Flynn TM (1989) Cryogenic Engineering. Plenu Press, New York

    Google Scholar 

  • World Energy Outlook (2010) International Energy Agency, Paris, France

    Google Scholar 

  • Yetis M, Gu¨ndu¨z U, Erog˘lu I, Yu¨cel M, Tu¨rker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 25:1035–1041

    Article  CAS  Google Scholar 

  • Zhu H, Miyake J, Tsygankov AA, Asada Y (1995) Hydrogen production from highly concentrated organic wastewater by photosynthetic bacteria & anaerobic bacteria. Water Treat 10:61–68

    Google Scholar 

  • Zhu HG, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrog Energy 27(11–12):1349–1357

    Article  CAS  Google Scholar 

  • Zittel W, Wurster R (1996) Hydrogen in the energy sector. Ludwig Bolkow-ST Report. http://www.hyweb.de/knowledge/w-i-energie W-eng

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Sharma, M., Kaushik, A. (2017). Biohydrogen Economy: Challenges and Prospects for Commercialization. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_12

Download citation

Publish with us

Policies and ethics