Skip to main content

Waste-to-Hydrogen Energy in Saudi Arabia: Challenges and Perspectives

  • Chapter
  • First Online:
Biohydrogen Production: Sustainability of Current Technology and Future Perspective

Abstract

Hydrogen (H2) has emerged as a promising alternative fuel that can be produced from renewable resources including organic waste through biological processes. In the Kingdom of Saudi Arabia (KSA), the annual generation rate of municipal solid waste (MSW) is around 15 million tons that average around 1.4 kg per capita per day. Similalry, a significant amount of industrial and agricultural waste is generated every year in KSA. Most of these wastes are disposed in landfills or dumpsites after partial segregation and recycling and without material or energy recovery. This causes environmental pollution and release of greenhouse gas (GHG) emissions along with public health problems. Therefore, the scope of producing renewable H2 energy from domestic and industrial waste sources is promising in KSA, as no waste-to-energy (WTE) facility exists. This chapter reviews the biological and chemical ways of H2 production from waste sources and availability of waste resources in KSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Qudais M, Abu-Qdais HA (2000) Energy content of municipal solid waste in Jordan and its potential utilization. Energy Convers Manag 4:983–991

    Article  Google Scholar 

  • Aga O, Ouda OKM, Raza SA (2014) Investigating waste to energy potential in the Eastern Region, Saudi Arabia, Renewable Energy for Developing Countries (REDEC 2014), November 26–27, 2014, Beirut, Lebanon

    Google Scholar 

  • Al-Abdoulhadi IA, Dinar HA, Ebert G, Buttner C (2011) Effect of salinity on leaf growth, leaf injury and biomass production in date palm cultivators. Indian J Sci Technol 4(11):1542–1546

    Google Scholar 

  • Alruqaie IM, Alharbi BH (2012) Environmental advantage assessment of recycling food waste in Riyadh, Saudi Arabia. Res J Environ Sci 6:230–237

    Article  Google Scholar 

  • Amtul S (2014) Kingdom: 2.5m animals sold in Saudi Arabia during hajj. Saudi Gazette. Available from: http://www.saudigazette.com.sa

  • Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–38

    Article  CAS  Google Scholar 

  • Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A: Gen 176:159–176

    Article  CAS  Google Scholar 

  • Asadullah M, Fujimoto K, Tomishige K (2001) Catalytic performance of Rh/CeO2 in the gasification of cellulose to synthesis gas at low temperature. Ind Eng Chem Res 40:5894–5900

    Article  CAS  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    Article  CAS  Google Scholar 

  • Bhutto AW, Bazmi AA, Kardar MN, Yaseen M, Zahedi G, Karim S (2011) Developments in Hydrogen Production through Microbial Processes; Pakistan’s Prospective. Int J Chem Environ Eng 2(3):189–205

    Google Scholar 

  • Bockris JO’M (1981) The economics of hydrogen as a fuel. Int J Hydrog Energy 6:223–241

    Article  Google Scholar 

  • Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 187:77–83

    Article  CAS  Google Scholar 

  • CDSI, Central Department of Statistics & Information (2010) Population & Housing Census for 1431 A.H (2010 A.D) Findings 2010. Available online at: http://www.cdsi.gov.sa/

  • Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486

    Article  CAS  Google Scholar 

  • Czernik S, French RJ (2006) Production of hydrogen from plastics by pyrolysis and catalytic steam reform. Energy Fuels 20:754–758

    Article  CAS  Google Scholar 

  • Das D, Veziro TV (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Davidian T, Guilhaume N, Iojoiu E, Provendier H, Mirodatos C (2007) Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Appl Catal Environ 73:116–127

    Article  CAS  Google Scholar 

  • Davila-Vazquez G, Arriaga S, Alatriste-Mondragon F, De- Leo’n-Rodrı’guez R, Rosales-Colunga LM, Razo-Flores E (2008) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45

    Article  CAS  Google Scholar 

  • Demirbas A, Arin G (2004) Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069

    Article  CAS  Google Scholar 

  • Demirbas A, Rehan M, Al-Sasi BO, Nizami AS (2016) Evaluation of natural gas hydrates as a future methane source. Pet Sci Technol. doi:10.1080/10916466.2016.1185442

  • FAO: Food and Agriculture Organization (2010) Energy supply and demand: trends and prospects. Report available online: ftp://ftp.fao.org/docrep/fao/010/i0139e/i0139e03.pdf

  • Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2:113–119

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gardy J, Hassanpour A, Lai X, Rehan M (2014) The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels. Int Sci J (J Environ Sci) 3:233–240

    Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E (2000) Microalgae: a green source of renewable h2. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727–732

    Article  CAS  Google Scholar 

  • Gomez X, Cuetos MJ, Prieto JI, Moran A (2009) Bio-hydrogen production from waste fermentation: mixing and static conditions. Renew Energy 34:970–975

    Article  CAS  Google Scholar 

  • Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11

    Article  Google Scholar 

  • Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D, Skonieczny MT, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59

    Article  CAS  Google Scholar 

  • Hamelers HVM, Ter-Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) New applications and performance of bio-electrochemical systems. Appl Microbiol Biotechnol 85:1673–1685

    Article  CAS  Google Scholar 

  • Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29:569–577

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Hong Y, Nizami AS, Pourbafrani M, Saville BA, MacLean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Biorefin 7:303–313

    Google Scholar 

  • Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    Article  CAS  Google Scholar 

  • Inayat A, Ahmad MM, Mutalib M, Yusup S (2012) Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production. Fuel Process Technol 93:26–34

    Article  CAS  Google Scholar 

  • Irfan M (2014) Massive wastage ‘Unacceptable’. Arab News. Friday 4, July 2014. Available from: www.arabnews.com

  • KACARE presentation. Renewable energy-waste to energy. A pillar of the sustainable energy kingdom. In: First international environment conference, Yanbu Al Sinaiyah, KSA: King Fahd Civic Centre 20–21 November 2012

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karmakar M, Datta A (2011) Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresour Technol 102:1907–1913

    Article  CAS  Google Scholar 

  • Kasakura T, Hiraoka M (1982) Pilot plant study on sewage sludge pyrolysis—I. Water Res 16:1335–1348

    Article  CAS  Google Scholar 

  • Khan MSM, Kaneesamkandi Z (2013) Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia. Int J Innov Appl Stud 4(1):101–113

    Google Scholar 

  • Kim HY (2003) A low cost production of hydrogen from carbonaceous wastes. Int J Hydrog Energy 28:1179–1186

    Article  CAS  Google Scholar 

  • Konieczny A, Mondal K, Wiltowski T, Dydo P (2008) Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int J Hydrog Energy 33:264–272

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrog Energy 33:258–263

    Article  Google Scholar 

  • Kumar N, Das D (2000a) Biological hydrogen production in a packed bed reactor using agroresidues as solid matrices. In: Proceedings of 13th WHEC, Beijing, 2000

    Google Scholar 

  • Kumar N, Das D (2000b) Enhancement of hydrogen production by enterobacter cloacae 08. Process Biochem 35:589–593

    Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photo-production by immobilized, sulfur-deprived chlamydomonas reinhardtii cells. Int J Hydrog Energy 31(5):659–667

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211

    Article  CAS  Google Scholar 

  • Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 70(4):2137–2145

    Google Scholar 

  • Liu H, Grot S, Logan B (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Logan B, Call D, Cheng S, Hamelers HM, Sleutels Tom HJA, Jeremiasse A, Rozendal A (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8631–8640

    Article  Google Scholar 

  • Lv P, Chang J, Xiong Z, Huang H, Wu C, Chen Y (2003) Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas. Energy Fuels 17:677–682

    Article  Google Scholar 

  • Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion—a review. Renew Sustain Energy Rev 16:2566–2582

    Article  CAS  Google Scholar 

  • Maness PC, Yu J, Eckert C, Ghirardi ML (2009) Photobiological hydrogen production—prospects and challenges. Microbe 4(6):659–667

    Google Scholar 

  • Maria RK (2013) Processing of food wastes. Chapter-3, pp 110–117. Adv Food Nutr Res. doi:10.1016/S1043-4526(09)58003-5

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol (Rockv) 127:740–748

    Article  CAS  Google Scholar 

  • MEP: Ministry of Economy and Planning (2010) The Nine Development Plan 2010–2014. Riyadh: Ministry of Economy and Planning Documents

    Google Scholar 

  • Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS (2016) Catalytic pyrolysis of plastic waste: a review. Accepted and in Press in Process Safety and Environmental Protection. DOI: 10.1016/j.psep.2016.06.022

  • Miura Y (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Process Biochem 30:1–7

    Article  CAS  Google Scholar 

  • Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179

    Article  CAS  Google Scholar 

  • Momirlan M, Veziroglu TN (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy 30:795–802

    Article  CAS  Google Scholar 

  • Nath K, Das D (2003) Hydrogen from biomass. Curr Sci (Bangalore) 85:265–271

    CAS  Google Scholar 

  • Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Nizami AS, Ismail IMI (2013) Life cycle assessment of biomethane from lignocellulosic biomass. Chapter in Singh A et al (eds) Life cycle assessment of renewable energy sources, green energy and technology. Springer, London, doi:10.1007/978-1-4471-5364-1_4

  • Nizami AS, Rehan M, Ouda OKM, Shahzad K, Sadef Y, Iqbal T et al (2015a) An argument for developing waste-to-energy technologies in Saudi Arabia. Chem Eng Trans 45:337–342. http://dx.doi.org/10.3303/CET1545057

  • Nizami AS, Ouda OKM, Rehan M, El-Maghraby AMO, Gardy J, Hassanpour A et al (2015b) The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 2015:1–10. http://dx.doi.org/10.1016/j.energy.2015.07.030

  • Nizami AS, Rehan M, Ismail IMI, Almeelbi T, Ouda OKM (2015c) Waste biorefinery in Makkah: a solution to convert waste produced during Hajj and Umrah Seasons into wealth. In: Conference: 15th scientific symposium for Hajj, Umrah and Madinah visit, Held in May 2015 in Madinah, Saudi Arabia. doi:10.13140/RG.2.1.4303.6560

  • Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, Almeelbi T, Basahi JM, Demirbas A (2016) Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy. http://dx.doi.org/10.1016/j.apenergy.2016.04.116

  • Ouda OKM, Cekirge HM, Raza SA (2013) An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers Manag 75:402–406

    Article  Google Scholar 

  • Ouda OKM, Raza SA, Al-Waked R, Al-Asad JF, Nizami A-S (2015) Waste-to-energy potential in the Western Province of Saudi Arabia. J King Saud Univ Eng Sci. doi:http://dx.doi.org/10.1016/j.jksues.2015.02.002

  • Ouda OKM, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sustain Energy Rev 61:328–340. http://dx.doi.org/10.1016/j.rser.2016.04.005

  • Rathi S (2006) Alternative approaches for better municipal solid waste management in Mumbai, India. J Waste Manag 26(10):1192–1200

    Google Scholar 

  • Rathore D, Nizami AS, Pant D, Singh A (2016) Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Res J 10:380–393

    Google Scholar 

  • Rehan M, Nizami AS, Shahzad K, Ouda OKM, Ismail IMI, Almeelbi T, Iqbal T, Demirbas A (2016) Pyrolytic liquid fuel: a source of renewable energy in Makkah. Energy Sources Part A. doi:10.1080/15567036.2016.1153753

  • Ruoppolo G, Ammendola P, Chirone R, Miccio F (2012) H2 -rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Manag 32:724–732

    Article  CAS  Google Scholar 

  • Sadaf Y, Nizami AS, Batool SA, Chaudhary MN, Ouda OKM, Asam ZZ, Habib K, Rehan M, Demibras A (2015) Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources Part B. doi:10.1080/1556249.2015.105295

  • SAWEA: Saudi Arabian Water Environmental Association (2013) Wastewater sludge treatment and disposal in KSA. A presentation given by Miahona. Available from: http://www.sawea.org/pdf/waterarabia2013/Sesssion_C/WASTEWATER_SLUDGE_TREATMENT_AND_DISPOSAL%20IN%20KSA.pdf

  • Schulz R (1996) Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. J Mar Biotechnol 4:16–22

    CAS  Google Scholar 

  • Sequeira CA, Santos DM (2010) Hydrogen production. Ciência & Tecnologia dos Materiais 22(3–4):76–86

    Google Scholar 

  • Shahzad K, Rehan M, Ismail IMI, Sagir M, Tahir MS, Bertok B, Nizami AS (2015) Comparative life cycle analysis of different lighting devices. Chem Eng Trans 45:631–636. doi:10.3303/CET1545106

  • Soni C, Wang Z, Dalai A, Pugsley T, Fonstad T (2009) Hydrogen production via gasification of meat and bone meal in two-stage fixed bed reactor system. Fuel 88:920–925

    Article  CAS  Google Scholar 

  • Tahir MS, Shahzad K, Shahid Z, Sagir M, Rehan M, Nizami AS (2015) Producing methane enriched biogas using solvent absorption method. Chem Eng Trans 45:1309–1314. doi:10.3303/CET1545219

  • Tawabini BS, Ouda OKM, Raza SA (2014) Investigating of waste to energy potential as a renewable energy resource in Al-Hasa Region, Saudi Arabia, 5th international symposium on energy from biomass and waste (VENICE 2014), 17–20 November 2014, Venice, Italy

    Google Scholar 

  • The study on wastewater treatment and water reuse in Saudi-Aramco, Saudi Arabia, commissioned by the ministry of economy, trade and industry, January 2012

    Google Scholar 

  • UD: Urban Development Series-Knowledge Papers (2012) A global review of solid waste management. Available Online: http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/Chap3.pdf

  • Uddin MN, Daud WWMA, Abbas HF (2013) Potential hydrogen and non-condensable gases production from biomass pyrolysis: insights into the process variables. Renew Sustain Energy Rev 27:204–224

    Article  Google Scholar 

  • US-EIA: US Energy Information Administration (2007) http://www.eia.gov/forecasts/aeo/archive.cfm. Accessed on 25 Jan 2015

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34(2):799–811

    Article  CAS  Google Scholar 

  • Wang J, Xu S, Xiao B, Xu M, Yang L, Liu S, Hu Z, Guo D, Hu M, Ma C, Luo S (2013) Influence of catalyst and temperature on gasification performance of pig compost for hydrogen-rich gas production. Int J Hydrog Energy 38:14200–14207

    Article  CAS  Google Scholar 

  • WHO: World Health Organization (2014) Available Online, http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

  • Winter CJ (2005) Into the hydrogen energy economy-milestones. Int J Hydrog Energy 30:681

    Article  CAS  Google Scholar 

  • Wu C, Williams PT (2009) Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Appl Catal Environ 87:152–161

    Article  CAS  Google Scholar 

  • Wu C, Wang L, Williams PT, Shi J, Huang J (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni content. Appl Catal Environ 108:6–13

    Article  Google Scholar 

  • Yetis M, Gunduz U, Eroglu I, Yucel M, Turker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 25(11):1035–1041

    Article  CAS  Google Scholar 

  • Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in chlamydomonas reinhardtii during sulfur limited and sulfur-sufficient growth. Plant Physiol (Rockv) 104:981–987

    CAS  Google Scholar 

  • Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 79–89

    Google Scholar 

  • Yuan X (2006) Converting waste plastics into liquid fuel by pyrolysis: developments in China. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics. Wiley, Changsha, pp 729–755

    Google Scholar 

  • Zhang B, Xiong S, Xiao B, Yu D, Jia X (2011) Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int J Hydrog Energy 36:355–363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nizami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Miandad, R. et al. (2017). Waste-to-Hydrogen Energy in Saudi Arabia: Challenges and Perspectives. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_11

Download citation

Publish with us

Policies and ethics