Waste-to-Hydrogen Energy in Saudi Arabia: Challenges and Perspectives

  • R. Miandad
  • M. Rehan
  • O. K. M. Ouda
  • M. Z. Khan
  • K. Shahzad
  • I. M. I. Ismail
  • A. S. NizamiEmail author


Hydrogen (H2) has emerged as a promising alternative fuel that can be produced from renewable resources including organic waste through biological processes. In the Kingdom of Saudi Arabia (KSA), the annual generation rate of municipal solid waste (MSW) is around 15 million tons that average around 1.4 kg per capita per day. Similalry, a significant amount of industrial and agricultural waste is generated every year in KSA. Most of these wastes are disposed in landfills or dumpsites after partial segregation and recycling and without material or energy recovery. This causes environmental pollution and release of greenhouse gas (GHG) emissions along with public health problems. Therefore, the scope of producing renewable H2 energy from domestic and industrial waste sources is promising in KSA, as no waste-to-energy (WTE) facility exists. This chapter reviews the biological and chemical ways of H2 production from waste sources and availability of waste resources in KSA.


Municipal Solid Waste Food Waste Plastic Waste Municipal Solid Waste Management MECMicrobial Electrolysis Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abu-Qudais M, Abu-Qdais HA (2000) Energy content of municipal solid waste in Jordan and its potential utilization. Energy Convers Manag 4:983–991CrossRefGoogle Scholar
  2. Aga O, Ouda OKM, Raza SA (2014) Investigating waste to energy potential in the Eastern Region, Saudi Arabia, Renewable Energy for Developing Countries (REDEC 2014), November 26–27, 2014, Beirut, LebanonGoogle Scholar
  3. Al-Abdoulhadi IA, Dinar HA, Ebert G, Buttner C (2011) Effect of salinity on leaf growth, leaf injury and biomass production in date palm cultivators. Indian J Sci Technol 4(11):1542–1546Google Scholar
  4. Alruqaie IM, Alharbi BH (2012) Environmental advantage assessment of recycling food waste in Riyadh, Saudi Arabia. Res J Environ Sci 6:230–237CrossRefGoogle Scholar
  5. Amtul S (2014) Kingdom: 2.5m animals sold in Saudi Arabia during hajj. Saudi Gazette. Available from:
  6. Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–38CrossRefGoogle Scholar
  7. Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A: Gen 176:159–176CrossRefGoogle Scholar
  8. Asadullah M, Fujimoto K, Tomishige K (2001) Catalytic performance of Rh/CeO2 in the gasification of cellulose to synthesis gas at low temperature. Ind Eng Chem Res 40:5894–5900CrossRefGoogle Scholar
  9. Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103CrossRefGoogle Scholar
  10. Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987CrossRefGoogle Scholar
  11. Bhutto AW, Bazmi AA, Kardar MN, Yaseen M, Zahedi G, Karim S (2011) Developments in Hydrogen Production through Microbial Processes; Pakistan’s Prospective. Int J Chem Environ Eng 2(3):189–205Google Scholar
  12. Bockris JO’M (1981) The economics of hydrogen as a fuel. Int J Hydrog Energy 6:223–241CrossRefGoogle Scholar
  13. Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 187:77–83CrossRefGoogle Scholar
  14. CDSI, Central Department of Statistics & Information (2010) Population & Housing Census for 1431 A.H (2010 A.D) Findings 2010. Available online at:
  15. Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486CrossRefGoogle Scholar
  16. Czernik S, French RJ (2006) Production of hydrogen from plastics by pyrolysis and catalytic steam reform. Energy Fuels 20:754–758CrossRefGoogle Scholar
  17. Das D, Veziro TV (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28CrossRefGoogle Scholar
  18. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057CrossRefGoogle Scholar
  19. Davidian T, Guilhaume N, Iojoiu E, Provendier H, Mirodatos C (2007) Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Appl Catal Environ 73:116–127CrossRefGoogle Scholar
  20. Davila-Vazquez G, Arriaga S, Alatriste-Mondragon F, De- Leo’n-Rodrı’guez R, Rosales-Colunga LM, Razo-Flores E (2008) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45CrossRefGoogle Scholar
  21. Demirbas A, Arin G (2004) Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069CrossRefGoogle Scholar
  22. Demirbas A, Rehan M, Al-Sasi BO, Nizami AS (2016) Evaluation of natural gas hydrates as a future methane source. Pet Sci Technol. doi: 10.1080/10916466.2016.1185442
  23. FAO: Food and Agriculture Organization (2010) Energy supply and demand: trends and prospects. Report available online:
  24. Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2:113–119CrossRefGoogle Scholar
  25. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  26. Gardy J, Hassanpour A, Lai X, Rehan M (2014) The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels. Int Sci J (J Environ Sci) 3:233–240Google Scholar
  27. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E (2000) Microalgae: a green source of renewable h2. Trends Biotechnol 18:506–511CrossRefGoogle Scholar
  28. Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727–732CrossRefGoogle Scholar
  29. Gomez X, Cuetos MJ, Prieto JI, Moran A (2009) Bio-hydrogen production from waste fermentation: mixing and static conditions. Renew Energy 34:970–975CrossRefGoogle Scholar
  30. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11CrossRefGoogle Scholar
  31. Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655CrossRefGoogle Scholar
  32. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193CrossRefGoogle Scholar
  33. Hallenbeck PC, Ghosh D, Skonieczny MT, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59CrossRefGoogle Scholar
  34. Hamelers HVM, Ter-Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) New applications and performance of bio-electrochemical systems. Appl Microbiol Biotechnol 85:1673–1685CrossRefGoogle Scholar
  35. Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29:569–577CrossRefGoogle Scholar
  36. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260CrossRefGoogle Scholar
  37. Hong Y, Nizami AS, Pourbafrani M, Saville BA, MacLean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Biorefin 7:303–313Google Scholar
  38. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178CrossRefGoogle Scholar
  39. Inayat A, Ahmad MM, Mutalib M, Yusup S (2012) Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production. Fuel Process Technol 93:26–34CrossRefGoogle Scholar
  40. Irfan M (2014) Massive wastage ‘Unacceptable’. Arab News. Friday 4, July 2014. Available from:
  41. KACARE presentation. Renewable energy-waste to energy. A pillar of the sustainable energy kingdom. In: First international environment conference, Yanbu Al Sinaiyah, KSA: King Fahd Civic Centre 20–21 November 2012Google Scholar
  42. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582CrossRefGoogle Scholar
  43. Karmakar M, Datta A (2011) Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresour Technol 102:1907–1913CrossRefGoogle Scholar
  44. Kasakura T, Hiraoka M (1982) Pilot plant study on sewage sludge pyrolysis—I. Water Res 16:1335–1348CrossRefGoogle Scholar
  45. Khan MSM, Kaneesamkandi Z (2013) Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia. Int J Innov Appl Stud 4(1):101–113Google Scholar
  46. Kim HY (2003) A low cost production of hydrogen from carbonaceous wastes. Int J Hydrog Energy 28:1179–1186CrossRefGoogle Scholar
  47. Konieczny A, Mondal K, Wiltowski T, Dydo P (2008) Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int J Hydrog Energy 33:264–272CrossRefGoogle Scholar
  48. Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrog Energy 33:258–263CrossRefGoogle Scholar
  49. Kumar N, Das D (2000a) Biological hydrogen production in a packed bed reactor using agroresidues as solid matrices. In: Proceedings of 13th WHEC, Beijing, 2000Google Scholar
  50. Kumar N, Das D (2000b) Enhancement of hydrogen production by enterobacter cloacae 08. Process Biochem 35:589–593Google Scholar
  51. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photo-production by immobilized, sulfur-deprived chlamydomonas reinhardtii cells. Int J Hydrog Energy 31(5):659–667CrossRefGoogle Scholar
  52. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185CrossRefGoogle Scholar
  53. Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211CrossRefGoogle Scholar
  54. Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 70(4):2137–2145Google Scholar
  55. Liu H, Grot S, Logan B (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRefGoogle Scholar
  56. Logan B, Call D, Cheng S, Hamelers HM, Sleutels Tom HJA, Jeremiasse A, Rozendal A (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8631–8640CrossRefGoogle Scholar
  57. Lv P, Chang J, Xiong Z, Huang H, Wu C, Chen Y (2003) Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas. Energy Fuels 17:677–682CrossRefGoogle Scholar
  58. Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion—a review. Renew Sustain Energy Rev 16:2566–2582CrossRefGoogle Scholar
  59. Maness PC, Yu J, Eckert C, Ghirardi ML (2009) Photobiological hydrogen production—prospects and challenges. Microbe 4(6):659–667Google Scholar
  60. Maria RK (2013) Processing of food wastes. Chapter-3, pp 110–117. Adv Food Nutr Res. doi: 10.1016/S1043-4526(09)58003-5
  61. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol (Rockv) 127:740–748CrossRefGoogle Scholar
  62. MEP: Ministry of Economy and Planning (2010) The Nine Development Plan 2010–2014. Riyadh: Ministry of Economy and Planning DocumentsGoogle Scholar
  63. Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS (2016) Catalytic pyrolysis of plastic waste: a review. Accepted and in Press in Process Safety and Environmental Protection. DOI:  10.1016/j.psep.2016.06.022
  64. Miura Y (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Process Biochem 30:1–7CrossRefGoogle Scholar
  65. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179CrossRefGoogle Scholar
  66. Momirlan M, Veziroglu TN (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy 30:795–802CrossRefGoogle Scholar
  67. Nath K, Das D (2003) Hydrogen from biomass. Curr Sci (Bangalore) 85:265–271Google Scholar
  68. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472CrossRefGoogle Scholar
  69. Nizami AS, Ismail IMI (2013) Life cycle assessment of biomethane from lignocellulosic biomass. Chapter in Singh A et al (eds) Life cycle assessment of renewable energy sources, green energy and technology. Springer, London, doi: 10.1007/978-1-4471-5364-1_4
  70. Nizami AS, Rehan M, Ouda OKM, Shahzad K, Sadef Y, Iqbal T et al (2015a) An argument for developing waste-to-energy technologies in Saudi Arabia. Chem Eng Trans 45:337–342.
  71. Nizami AS, Ouda OKM, Rehan M, El-Maghraby AMO, Gardy J, Hassanpour A et al (2015b) The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 2015:1–10.
  72. Nizami AS, Rehan M, Ismail IMI, Almeelbi T, Ouda OKM (2015c) Waste biorefinery in Makkah: a solution to convert waste produced during Hajj and Umrah Seasons into wealth. In: Conference: 15th scientific symposium for Hajj, Umrah and Madinah visit, Held in May 2015 in Madinah, Saudi Arabia. doi: 10.13140/RG.2.1.4303.6560
  73. Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, Almeelbi T, Basahi JM, Demirbas A (2016) Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy.
  74. Ouda OKM, Cekirge HM, Raza SA (2013) An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers Manag 75:402–406CrossRefGoogle Scholar
  75. Ouda OKM, Raza SA, Al-Waked R, Al-Asad JF, Nizami A-S (2015) Waste-to-energy potential in the Western Province of Saudi Arabia. J King Saud Univ Eng Sci. doi:
  76. Ouda OKM, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sustain Energy Rev 61:328–340.
  77. Rathi S (2006) Alternative approaches for better municipal solid waste management in Mumbai, India. J Waste Manag 26(10):1192–1200Google Scholar
  78. Rathore D, Nizami AS, Pant D, Singh A (2016) Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Res J 10:380–393Google Scholar
  79. Rehan M, Nizami AS, Shahzad K, Ouda OKM, Ismail IMI, Almeelbi T, Iqbal T, Demirbas A (2016) Pyrolytic liquid fuel: a source of renewable energy in Makkah. Energy Sources Part A. doi: 10.1080/15567036.2016.1153753
  80. Ruoppolo G, Ammendola P, Chirone R, Miccio F (2012) H2 -rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Manag 32:724–732CrossRefGoogle Scholar
  81. Sadaf Y, Nizami AS, Batool SA, Chaudhary MN, Ouda OKM, Asam ZZ, Habib K, Rehan M, Demibras A (2015) Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources Part B. doi: 10.1080/1556249.2015.105295
  82. SAWEA: Saudi Arabian Water Environmental Association (2013) Wastewater sludge treatment and disposal in KSA. A presentation given by Miahona. Available from:
  83. Schulz R (1996) Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. J Mar Biotechnol 4:16–22Google Scholar
  84. Sequeira CA, Santos DM (2010) Hydrogen production. Ciência & Tecnologia dos Materiais 22(3–4):76–86Google Scholar
  85. Shahzad K, Rehan M, Ismail IMI, Sagir M, Tahir MS, Bertok B, Nizami AS (2015) Comparative life cycle analysis of different lighting devices. Chem Eng Trans 45:631–636. doi: 10.3303/CET1545106
  86. Soni C, Wang Z, Dalai A, Pugsley T, Fonstad T (2009) Hydrogen production via gasification of meat and bone meal in two-stage fixed bed reactor system. Fuel 88:920–925CrossRefGoogle Scholar
  87. Tahir MS, Shahzad K, Shahid Z, Sagir M, Rehan M, Nizami AS (2015) Producing methane enriched biogas using solvent absorption method. Chem Eng Trans 45:1309–1314. doi: 10.3303/CET1545219
  88. Tawabini BS, Ouda OKM, Raza SA (2014) Investigating of waste to energy potential as a renewable energy resource in Al-Hasa Region, Saudi Arabia, 5th international symposium on energy from biomass and waste (VENICE 2014), 17–20 November 2014, Venice, ItalyGoogle Scholar
  89. The study on wastewater treatment and water reuse in Saudi-Aramco, Saudi Arabia, commissioned by the ministry of economy, trade and industry, January 2012Google Scholar
  90. UD: Urban Development Series-Knowledge Papers (2012) A global review of solid waste management. Available Online:
  91. Uddin MN, Daud WWMA, Abbas HF (2013) Potential hydrogen and non-condensable gases production from biomass pyrolysis: insights into the process variables. Renew Sustain Energy Rev 27:204–224CrossRefGoogle Scholar
  92. US-EIA: US Energy Information Administration (2007) Accessed on 25 Jan 2015
  93. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34(2):799–811CrossRefGoogle Scholar
  94. Wang J, Xu S, Xiao B, Xu M, Yang L, Liu S, Hu Z, Guo D, Hu M, Ma C, Luo S (2013) Influence of catalyst and temperature on gasification performance of pig compost for hydrogen-rich gas production. Int J Hydrog Energy 38:14200–14207CrossRefGoogle Scholar
  95. WHO: World Health Organization (2014) Available Online,
  96. Winter CJ (2005) Into the hydrogen energy economy-milestones. Int J Hydrog Energy 30:681CrossRefGoogle Scholar
  97. Wu C, Williams PT (2009) Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Appl Catal Environ 87:152–161CrossRefGoogle Scholar
  98. Wu C, Wang L, Williams PT, Shi J, Huang J (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni content. Appl Catal Environ 108:6–13CrossRefGoogle Scholar
  99. Yetis M, Gunduz U, Eroglu I, Yucel M, Turker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 25(11):1035–1041CrossRefGoogle Scholar
  100. Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in chlamydomonas reinhardtii during sulfur limited and sulfur-sufficient growth. Plant Physiol (Rockv) 104:981–987Google Scholar
  101. Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 79–89Google Scholar
  102. Yuan X (2006) Converting waste plastics into liquid fuel by pyrolysis: developments in China. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics. Wiley, Changsha, pp 729–755Google Scholar
  103. Zhang B, Xiong S, Xiao B, Yu D, Jia X (2011) Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int J Hydrog Energy 36:355–363CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  • R. Miandad
    • 1
  • M. Rehan
    • 1
  • O. K. M. Ouda
    • 2
  • M. Z. Khan
    • 3
  • K. Shahzad
    • 1
  • I. M. I. Ismail
    • 1
  • A. S. Nizami
    • 1
    Email author
  1. 1.Center of Excellence in Environmental Studies (CEES)King Abdul Aziz UniversityJeddahSaudi Arabia
  2. 2.Department of Civil EngineeringPrince Mohamed Bin Fahd UniversityAl-KhobarSaudi Arabia
  3. 3.Environmental Research Laboratory, Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations