Advertisement

CW-Complexes and Homotopy

  • Mahima Ranjan Adhikari
Chapter

Abstract

This chapter conveys a study of a special class of topological spaces, called CW-complexes introduced by J.H.C. Whitehead (1904–1960) in 1949 with their homotopy properties to meet the need for development of algebraic topology. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). Algebraic topologists now feel that the category of CW-complexes is a good category for homotopy and homology theories.

Keywords

Topological Space Simplicial Complex Homotopy Type Hausdorff Space Algebraic Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, J.F.: Algebraic Topology: A Student’s Guide. Cambridge University Press, Cambridge (1972)CrossRefMATHGoogle Scholar
  2. Aguilar, M., Gitler, S., Prieto, C.: Algebraic Topology from a Homotopical View Point. Springer, New York (2002)CrossRefMATHGoogle Scholar
  3. Arkowitz, Martin: Introduction to Homotopy Theory. Springer, New York (2011)CrossRefMATHGoogle Scholar
  4. Blakers, A.L., Massey, W.S.: The homotopy groups of a triad II. Ann. Math. 55(2), 192–201 (1952)Google Scholar
  5. Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960. Modern Birkhäuser, Boston (1989)MATHGoogle Scholar
  6. Dold, A.: Lectures on Algebraic Topology. Springer, New York (1972)CrossRefMATHGoogle Scholar
  7. Dugundji, J.: Topology. Allyn & Bacon, Newtown (1966)MATHGoogle Scholar
  8. Dyer, E.: Cohomology Theories. Benjamin, New York (1969)MATHGoogle Scholar
  9. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)CrossRefMATHGoogle Scholar
  10. Gray, B.: Homotopy Theory. An Introduction to Algebraic Topology. Academic Press, New York (1975)MATHGoogle Scholar
  11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  12. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1983)Google Scholar
  13. Hilton, P.J., Wyue, S.: Homology Theory. Cambridge University Press, Cambridge (1960)CrossRefGoogle Scholar
  14. Hu, S.T.: Homotopy Theory. Academic Press, New York (1959)MATHGoogle Scholar
  15. Hu, S.T.: Homology Theory. Holden Day, Oakland CH (1966)Google Scholar
  16. Mayer, J.: Algebraic Topology. Prentice-Hall, New Jersy (1972)Google Scholar
  17. Massey, W.S.: A Basic Course in Algebraic Topology. Springer, New York (1991)MATHGoogle Scholar
  18. Maunder, C.R.F.: Algebraic Topology. Van Nostrand Reinhhold, London (1970)MATHGoogle Scholar
  19. Milnor, J.: On spaces having the homotopy type a CW-compex. Trans. Am. Math. Soc. 90, 272–280 (1959)MathSciNetMATHGoogle Scholar
  20. Munkres, J.R.: Elements of Algebraic Topology. Addition-Wesley-Publishing Company, Menlo Park (1984)MATHGoogle Scholar
  21. Rotman, J.J.: An Introduction to Algebraic Topology. Springer, New York (1988)CrossRefMATHGoogle Scholar
  22. Singer, I.M., Thrope, J.A.: Lecture Notes on Elementary Topology and Geometry. Springer, New York (1967)Google Scholar
  23. Spanier, E.: Algebraic Topology. McGraw-Hill, New York (1966)MATHGoogle Scholar
  24. Steenrod. N.: The Topology of Fibre Bundles. Prentice University Press, Prentice (1955)Google Scholar
  25. Steenrod, N.: A convenient category of topological spaces. Mich. Math. J. 14, 133–152 (1967)MathSciNetCrossRefMATHGoogle Scholar
  26. Switzer, R.M.: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  27. Whitehead, G.W.: Elements of Homotopy Theory. Springer, New York (1978)CrossRefMATHGoogle Scholar
  28. Whitehead, J.H.C.: Combinatorial homotopy. I. Bull. Am. Math. Soc. 55, 213–245 (1949a)MathSciNetCrossRefMATHGoogle Scholar
  29. Whitehead, J.H.C.: Combinatorial homotopy. II. Bull. Am. Math. Soc. 55, 453–496 (1949b)MathSciNetCrossRefMATHGoogle Scholar
  30. Whitehead, J.H.C.: A certain exact sequence. Ann. Math. 52(2), 51–110 (1950)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Institute for Mathematics, Bioinformatics, Information Technology and Computer Science (IMBIC)KolkataIndia

Personalised recommendations