Advertisement

Applications

  • Mahima Ranjan Adhikari
Chapter

Abstract

In earlier chapters some applications of algebraic topology have been discussed. This chapter conveys further applications to understand the scope and power of algebraic topology displaying the great beauty of the subject.

Keywords

Homology Group Euler Characteristic Homotopy Group Algebraic Topology Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, J.F.: Algebraic Topology: A student’s Guide. Cambridge University Press, Cambridge (1972)CrossRefMATHGoogle Scholar
  2. Adhikari, M.R., Adhikari, A.: Basic Modern Algebra with Applications, Springer, New Delhi, New York, Heidelberg (2014)Google Scholar
  3. Armstrong, M.A.: Basic Topology. Springer, New York (1983)Google Scholar
  4. Atiyah, M.F.: The geometry and physics of knots. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
  5. Babaev, E.V.: The Invariance of molecular topology. Moscow State University, Moscow (1994)Google Scholar
  6. Bonchev D., Rouvray R. (eds.): Chemical Topology: Introduction and Fundamentals. Gordon and Breach Publ., Reading, (1999)Google Scholar
  7. Border, K. C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985)Google Scholar
  8. Chambers, E. W., Erickson, J., Worah, P.: Testing contractibility in planar Rips complexes. In: Proceedings of the 24th Annual Symposium of Computation Geometry. College Park, MD, pp. 251–259 (2008)Google Scholar
  9. Cortes J., Martinez S., Karatas T., Bullo, F.: Coverage control for mobile sensing networks. In: Proceedings of the IEEE International Conference on Robotics Automation. Washington, DC, Vol.2, pp. 1327 –1332. (2002)Google Scholar
  10. Croom, F.H.: Basic Concepts of Algebraic Topology. Springer, New York, Heidelberg, Berlin (1978)CrossRefMATHGoogle Scholar
  11. Darcy, I., Mners, D.: Knot Theory. Polish Academy of Sciences, Warszawa (1998)Google Scholar
  12. Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960, Modern Birkhäuser (1989)Google Scholar
  13. Dold, A.: Lectures on Algebraic Topology. Springer, New York (1972)CrossRefMATHGoogle Scholar
  14. Dodson, C.T.J., Parker P.E.: A User’s Guide to Algebraic Topology, Kluwer Academic Publishers, Berlin (1997)Google Scholar
  15. Eckman, B.: “Social Choice and Topology A Case of Pure and Applied Mathematics”, (2003). http://www.elsevier.de/expomath
  16. Edelsbrunner, H., Harer, J.L.: Computational Topology. An Introduction. Amer. Math. Soc, Providence, Rhode Island (2009)CrossRefMATHGoogle Scholar
  17. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)CrossRefMATHGoogle Scholar
  18. Eschrig, H.: Topology and Geometry for Physics. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  19. Fulton, W.: Algebraic Topology. A First Course. Springer, New York (1975)MATHGoogle Scholar
  20. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)Google Scholar
  21. Gray, B.: Homotopy Theory. An Introduction to Algebraic Topology. Acamedic Press, New York (1975)MATHGoogle Scholar
  22. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.T., Ann, B.H.: A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph 12, 474–484 (2006)CrossRefGoogle Scholar
  23. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)Google Scholar
  24. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1983)Google Scholar
  25. Hilton, P.J., Wylie, S.: Homology Theory. Cambridge University Press, Cambridge (1960)CrossRefMATHGoogle Scholar
  26. King R.B.(ed.), Chemical Applications of Topology and Graph Theory; Studies in Physical and Theoretical Chemistry, Vol. 28, Elsevier, Amsterdam (1983)Google Scholar
  27. Massey, W.S.: A Basic Course in Algebraic Topology. Springer, New York (1991)MATHGoogle Scholar
  28. Maunder, C.R.F.: Algebraic Topology, Van Nostrand Reinhold Company, London, 1970. Dover, Reprinted (1996)Google Scholar
  29. Mayer, J.: Algebraic Topology. Prentice-Hall, New Jersy (1972)Google Scholar
  30. Monastyrsky, M. (ed.): Topology in Molecular Biology. Springer, Berlin (2007)Google Scholar
  31. Monastyrsky, M.: Topology of Gauge Fields and Condensed Matter. Plenum, New York (1993)CrossRefMATHGoogle Scholar
  32. Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic Press, London (1983)MATHGoogle Scholar
  33. Nakahara, M.: Geometry. Institute of Physics Publishing, Taylor and Francis, Bristol, Topology and Physics (2003)MATHGoogle Scholar
  34. Elliot, Pearl (ed.): Open Problems in Topology II. Elsevier, Amsterdam (2007)Google Scholar
  35. Schwartz, A.S.: Quantum field theory and topology. Springer, Berlin (1993)CrossRefGoogle Scholar
  36. de Silva., Ghrist, R.: Homological Sensor Networks. Notices of AMS 54(1), 1–11 (2007)Google Scholar
  37. Simmons, H.E.: Topological Methods in Chemistry. Wiley Interscience, New York (1989)Google Scholar
  38. Spanier, E.: Algebraic Topology. McGraw-Hill, New York (1966)Google Scholar
  39. Steenrod N.E.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)Google Scholar
  40. Switzer, R.M.: Algebraic Topology: Homotopy and Homology. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  41. Whitehead, G.W.: Elements of Homotopy Theory. Springer, New York (1978)CrossRefMATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Institute for Mathematics, Bioinformatics, Information Technology and Computer Science (IMBIC)KolkataIndia

Personalised recommendations