Advertisement

Eilenberg–MacLane Spaces

  • Mahima Ranjan Adhikari
Chapter

Abstract

This chapter conveys homotopy theory through an important class of CW-complexes called Eilenberg–MacLane spaces introduced by S. Eilenberg (1915–1998) and S. MacLane (1909–2005) in 1945.

Keywords

Abelian Group Cohomology Group Construction Process Orbit Space Homotopy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, J.F.: Algebraic Topology: A student’s Guide. Cambridge University Press, Cambridge (1972)CrossRefMATHGoogle Scholar
  2. Aguilar, M., Gitler, S., Prieto, C.: Algebraic Topology from a Homotopical View Point. Springer, New York (2002)CrossRefMATHGoogle Scholar
  3. Arkowitz, M.: Introduction to Homotopy Theory. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  4. Armstrong, A.: Basic Topology. Springer, New York (1983)CrossRefMATHGoogle Scholar
  5. Barratt, M.G.: Track groups I. Proc. Lond. Math. Soc. 5(3), 71–106 (1955)Google Scholar
  6. Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960, Modern Birkhäuser (1989)Google Scholar
  7. Eilenberg, S., MacLane, S.: Relations between homology and homotopy groups. Proc. Nat. Acad. Sci. USA 29, 155–158 (1943)MathSciNetCrossRefMATHGoogle Scholar
  8. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Amer. Math. Soc. 58, 231–294 (1945a)Google Scholar
  9. Eilenberg, S., MacLane, S.: Relations between homology and homotopy groups of spaces I. Ann. Math. 46, 480–509 (1945b)Google Scholar
  10. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)CrossRefMATHGoogle Scholar
  11. Fulton, W.: Algebraic Topology, A First Course. Springer, New York (1975)MATHGoogle Scholar
  12. Gray, B.: Homotopy Theory, An Introduction to Algebraic Topology. Academic Press, New York (1975)MATHGoogle Scholar
  13. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  14. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1983)Google Scholar
  15. Hu, S.T.: Homotopy Theory. Academic Press, New York (1959)MATHGoogle Scholar
  16. Massey, W.S.: A Basic Course in Algebraic Topology. Springer, New York (1991)MATHGoogle Scholar
  17. Maunder, C.R.F.: Algebraic Topology, Van Nostrand Reinhhold, London, 1970. Dover, Reprinted (1980)Google Scholar
  18. Mayer, J.: Algebraic Topology. Prentice-Hall, New Jersy (1972)Google Scholar
  19. Munkres, J.R.: Elements of Algebraic Topology. Addition-Wesley-Publishing Company, Reading (1984)Google Scholar
  20. Postnikov, M.: Determination of the homology groups of a space by means of the homotopy invariants. Doklady Akademii Nauk SSSR 76, 359–362 (1951)MathSciNetGoogle Scholar
  21. Rotman, J.J.: An Introduction to Algebraic Topology. Springer, New York (1988)CrossRefMATHGoogle Scholar
  22. Seree, J.-P.: Homologie singuliére des espaces fibrés. Ann. of Math. 54, 425–505 (1951)MathSciNetCrossRefMATHGoogle Scholar
  23. Spanier, E.: Algebraic Topology. McGraw-Hill, New York (1966)MATHGoogle Scholar
  24. Switzer, R.M.: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  25. Whitehead, G.W.: Elements of Homotopy Theory. Springer, New York (1978)CrossRefMATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Institute for Mathematics, Bioinformatics, Information Technology and Computer Science (IMBIC)KolkataIndia

Personalised recommendations