Advertisement

Microscopy-Based High-Throughput Analysis of Cells Interacting with Nanostructures

  • Raimo Hartmann
  • Wolfgang J. Parak
Chapter

Abstract

Due to their small size and related interesting properties, artificial nanomaterials are utilized for a great number of biological and medical applications. Cell entry routes, intracellular trafficking and processing of nanoparticles, which determine their fate, efficiency, and toxicity, are depending on various parameters of the specific nanomaterial, such as size, surface charge, surface chemistry and elasticity. Nanoparticle-cell interactions are typically elucidated by means of fluorescence microscopy as cell functions can be observed by a multiplicity of commercially available probes. For the quantification of cell features from images (image cytometry), computer-based algorithms are favoured to avoid bias introduced by the subjective perception of the observer. By applying high throughput microscopy in combination with digital image cytometry the screening of high numbers of cells is made possible yielding statistically meaningful results. In this chapter methods from digital image cytometry are described for assessing the interactions of cells with nanostructures.

Keywords

Image Segmentation Point Spread Function Cell Segmentation Image Cytometry Watershed Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chemie Int Ed 49:1362–1395CrossRefGoogle Scholar
  2. 2.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586CrossRefPubMedGoogle Scholar
  3. 3.
    Barreto JA, O’Malley W, Kubeil M et al (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40CrossRefPubMedGoogle Scholar
  4. 4.
    Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001CrossRefGoogle Scholar
  5. 5.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedGoogle Scholar
  6. 6.
    Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212CrossRefGoogle Scholar
  7. 7.
    McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–67CrossRefPubMedGoogle Scholar
  8. 8.
    Liong M, Lu J, Kovochich M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chemie - Int Ed 47:5122–5135CrossRefGoogle Scholar
  10. 10.
    Casula MF, Floris P, Innocenti C et al (2010) Magnetic resonance imaging contrast agents based on iron oxide superparamagnetic ferrofluids. Chem Mater 22:1739–1748CrossRefGoogle Scholar
  11. 11.
    Dutz S, Andrä W, Hergt R et al (2007) Biomedical heating applications of magnetic iron oxide nanoparticles. In: Magjarevic R (ed) World congress on medical physics and biomedical engineering 2006 SE - 76. Springer, Heidelberg, pp 271–274CrossRefGoogle Scholar
  12. 12.
    Sperling RA, Rivera Gil P, Zhang F et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRefPubMedGoogle Scholar
  13. 13.
    Xia Y (2008) Nanomaterials at work in biomedical research. Nat Mater 7:758–760CrossRefPubMedGoogle Scholar
  14. 14.
    Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio- sensors. Chem Soc Rev 36:579–591CrossRefPubMedGoogle Scholar
  15. 15.
    Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964CrossRefGoogle Scholar
  16. 16.
    Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefPubMedGoogle Scholar
  17. 17.
    Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1Google Scholar
  19. 19.
    Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–474CrossRefPubMedGoogle Scholar
  20. 20.
    Jain PK, ElSayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29CrossRefGoogle Scholar
  21. 21.
    Neely A, Perry C, Varisli B et al (2009) Ultrasensitive and highly selective detection of alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano 3:2834–2840CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fan J, Li H, Jiang J et al (2008) 3c-sic nanocrystals as fluorescent biological labels. Small 4:1058–1062CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang S, Li J, Lykotrafitis G et al (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stoehr LC, Gonzalez E, Stampfl A et al (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hühn D, Kantner K, Geidel C et al (2013) Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7:3253–3263CrossRefPubMedGoogle Scholar
  26. 26.
    Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized mdck cells. Biomacromolecules 9:435–443CrossRefPubMedGoogle Scholar
  27. 27.
    Schweiger C, Hartmann R, Zhang F et al (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnology 10:28CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Anguissola S, Garry D, Salvati A et al (2014) High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles. PLoS One 9:e108025CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hartmann R, Weidenbach M, Neubauer M et al (2015) Stiffness-dependent in vitro uptake and lysosomal acidification of colloidal particles. Angew Chemie Int Ed 54:1365–1368CrossRefGoogle Scholar
  30. 30.
    Banquy X, Suarez F, Argaw A et al (2009) Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter 5:3984CrossRefGoogle Scholar
  31. 31.
    Liu W, Zhou X, Mao Z et al (2012) Uptake of hydrogel particles with different stiffness and its influence on hepg2 cell functions. Soft Matter 8:9235CrossRefGoogle Scholar
  32. 32.
    Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefPubMedGoogle Scholar
  34. 34.
    Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang X, Röcker C, Hafner M et al (2010) Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live hela cells. ACS Nano 4:6787–6797CrossRefPubMedGoogle Scholar
  36. 36.
    Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen S. J, Manshian B, Franz J, Valdeperez D, Pelaz B, Hampp N et al. (n.d.) Nano Today, in revision.Google Scholar
  37. 37.
    Kim JA, Åberg C, Salvati A, Dawson KA (2011) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7:62–68CrossRefPubMedGoogle Scholar
  38. 38.
    De Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919CrossRefPubMedGoogle Scholar
  39. 39.
    Van Der Zande M, Vandebriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442CrossRefPubMedGoogle Scholar
  40. 40.
    Kreyling WG, Abdelmonem AM, Ali Z et al (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619–623CrossRefPubMedGoogle Scholar
  41. 41.
    Haney SA (2007) High content screening: science, techniques and applications. High Content Screen Sci Tech Appl 1:391Google Scholar
  42. 42.
    Gasparri F (2009) An overview of cell phenotypes in hcs: limitations and advantages. Expert Opin Drug Discov 4:643–657CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor DL, Haskins JR, Giuliano KA (2007) High content screening : a powerful approach to systems cell biology and drug discoveryGoogle Scholar
  44. 44.
    Richards GR, Smith AJ, Parry F et al (2006) A morphology- and kinetics-based cascade for human neural cell high content screening. Assay Drug Dev Technol 4:143–152CrossRefPubMedGoogle Scholar
  45. 45.
    Fennell M, Chan H, Wood A (2006) Multiparameter measurement of caspase 3 activation and apoptotic cell death in nt2 neuronal precursor cells using high-content analysis. J Biomol Screen Off J Soc Biomol Screen 11:296–302CrossRefGoogle Scholar
  46. 46.
    Inglefield JR, Larson CJ, Gibson SJ et al (2006) Apoptotic responses in squamous carcinoma and epithelial cells to small-molecule toll-like receptor agonists evaluated with automated cytometry. J Biomol Screen Off J Soc Biomol Screen 11:575–585CrossRefGoogle Scholar
  47. 47.
    Lövborg H, Gullbo J, Larsson R (2005) Screening for apoptosis--classical and emerging techniques. Anticancer Drugs 16:593–599CrossRefPubMedGoogle Scholar
  48. 48.
    Bertelsen M, Sanfridson A (2005) Inflammatory pathway analysis using a high content screening platform. Assay Drug Dev Technol 3:261–271CrossRefPubMedGoogle Scholar
  49. 49.
    Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356CrossRefPubMedGoogle Scholar
  50. 50.
    Moffat J, Grueneberg DA, Yang X et al (2006) A lentiviral rnai library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283–1298CrossRefPubMedGoogle Scholar
  51. 51.
    Bjorklund M, Taipale M, Varjosalo M et al (2006) Identification of pathways regulating cell size and cell-cycle progression by rnai. Nature 439:1009–1013CrossRefPubMedGoogle Scholar
  52. 52.
    Jan E, Byrne SJ, Cuddihy M et al (2008) High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2:928–38CrossRefPubMedGoogle Scholar
  53. 53.
    Soenen SJ, Manshian B, Montenegro JM et al (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783CrossRefPubMedGoogle Scholar
  54. 54.
    Solmesky LJ, Shuman M, Goldsmith M et al (2011) Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach. Nanotechnology 22:494016CrossRefPubMedGoogle Scholar
  55. 55.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21CrossRefPubMedGoogle Scholar
  56. 56.
    Lindblad J (2002) Development of algorithms for digital image cytometryGoogle Scholar
  57. 57.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J et al (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Basiji DA, Ortyn WE, Liang L et al (2007) Cellular image analysis and imaging by flow cytometry. Clin Lab Med 27:653–670CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Dreinhöfer KE, Baldetorp B, Åkerman M et al (2002) DNA ploidy in soft tissue sarcoma: comparison of flow and image cytometry with clinical follow-up in 93 patients. Clin Cytom 50:19–24CrossRefGoogle Scholar
  60. 60.
    Boland MV, Markey MK, Murphy RF (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33:366–375CrossRefPubMedGoogle Scholar
  61. 61.
    Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Donaldson JG (2002) Immunofluorescence staining. Curr Protoc Immunol Chapter 21, Unit 21.3.Google Scholar
  63. 63.
    Suzuki T, Matsuzaki T, Hagiwara H et al (2007) Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem Cytochem 40:131–137CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hartmann R, Carregal-Romero S, Parak WJ, Rivera_Gil P (2012) Investigating nanoparticle internalization patterns by quantitative correlation analysis of microscopy imaging data. In: de la Fuente JM, Grazu V (eds) Inorganic nanoparticles vs organic nanoparticles. Elsevier Ltd, Amsterdam, p 181CrossRefGoogle Scholar
  65. 65.
    Pawley JB, Masters BR (2008) Handbook of biological confocal microscopy, third edition. J Biomed Opt 13:029902CrossRefGoogle Scholar
  66. 66.
    Gonzalez RC, Woods RE (2007) Digital image processing. 976Google Scholar
  67. 67.
    Lindblad J, Bengtsson E (2001) A comparison of methods for estimation of intensity non uniformities in 2d and 3d microscope images of fluorescence stained cells. In: Proceedings of 12th Scandinavian conference on image analysis, 264–271.Google Scholar
  68. 68.
    Landmann L (2002) Deconvolution improves colocalization analysis of multiple uorochromes in 3d confocal data sets more than ltering techniques. Imaging 208:134–147Google Scholar
  69. 69.
    Chen S, Leung H (2004) Chaotic spread spectrum watermarking for remote sensing images. J Electron Imaging 13:220CrossRefGoogle Scholar
  70. 70.
    Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201CrossRefPubMedGoogle Scholar
  71. 71.
    Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 1:21–46CrossRefGoogle Scholar
  72. 72.
    Jones TR, Carpenter A, Golland P (2005) Voronoi-based segmentation of cells on image manifolds. In: Computer vision for biomedical image applications. Springer, Heidelberg, pp 535–543CrossRefGoogle Scholar
  73. 73.
    Aurenhammer F (1991) Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput Surv 23:345–405CrossRefGoogle Scholar
  74. 74.
    Ballard DH (1981) Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit 13:111–122CrossRefGoogle Scholar
  75. 75.
    Rodenacker K, Bengtsson E (2003) A feature set for cytometry on digitized microscopic images. Anal Cell Pathol 25:1–36CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Perlman ZE, Slack MD, Feng Y et al (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198CrossRefPubMedGoogle Scholar
  77. 77.
    Mitchison TJ (2005) Small-molecule screening and profiling by using automated microscopy. ChemBioChem 6:33–39CrossRefPubMedGoogle Scholar
  78. 78.
    Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804CrossRefGoogle Scholar
  80. 80.
    Pelaz B, del Pino P, Maffre P et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008CrossRefPubMedGoogle Scholar
  81. 81.
    Hartmann R, Carregal-Romero S, Parak WJ, Rivera-Gil P (2012) Investigating nanoparticle internalization patterns by quantitative correlation analysis of microscopy imaging data. Front Nanosci 4:181–196Google Scholar
  82. 82.
    Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc 169:375–382CrossRefGoogle Scholar
  83. 83.
    Crocker J, Crocker J, Grier D (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  84. 84.
    Jaqaman K, Danuser G (2009) Computational image analysis of cellular dynamics: a case study based on particle tracking. Cold Spring Harb. Protoc. 4Google Scholar
  85. 85.
    Purschke M, Rubio N, Held KD, Redmond RW (2010) Phototoxicity of hoechst 33342 in time-lapse fluorescence microscopy. Photochem Photobiol Sci 9:1634–1639CrossRefPubMedGoogle Scholar
  86. 86.
    Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Fachbereich PhysikPhilipps Universität MarburgMarburgGermany

Personalised recommendations