Hindrances to the Efficient and Stable Expression of Transgenes in Plant Synthetic Biology Approaches



The genetic transformation of plants has become a necessary tool for fundamental plant biology research as well as for the generation of engineered plants exhibiting improved agronomic and industrial traits. However, the potential of transgenic plant technology applications is significantly hindered by the fact that gene silencing often renders transgene expression low and highly variable among lines. In this chapter we summarize the factors in the generation of a transgenic plant that account for the triggering of silencing, mainly genome integration and construct design issues that end up in the detection of the transgenic foreign DNA. Currently favored strategies to minimize silencing will also be discussed, and future directions of research to help overcome these limitations will be proposed.


Locus Control Region Transcriptional Gene Silence Transgenic Construct Antisense Transcription Transgenic Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anami S, Njuguna E, Coussens G et al (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494. doi: 10.1387/ijdb.130232mv CrossRefPubMedGoogle Scholar
  2. 2.
    Bode J, Benham C, Knopp A, Mielke C (2000) Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit Rev Eukaryot Gene Expr 10:73–90CrossRefPubMedGoogle Scholar
  3. 3.
    Bortesi L, Fischer R (2014) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52. doi: 10.1016/j.biotechadv.2014.12.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Chalfun-Junior A, Mes JJ, Mlynárová L et al (2003) Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences. FEBS Lett 555:459–463. doi: 10.1016/S0014-5793(03)01300-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Chiba M, Reed JC, Prokhnevsky AI et al (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14. doi: 10.1016/j.virol.2005.09.068 CrossRefPubMedGoogle Scholar
  6. 6.
    Christie M, Croft LJ, Carroll BJ (2011) Intron splicing suppresses RNA silencing in Arabidopsis. Plant J 68:159–167. doi: 10.1111/j.1365-313X.2011.04676.x CrossRefPubMedGoogle Scholar
  7. 7.
    Circelli P, Donini M, Villani ME et al (2010) Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 1:221–224. doi: 10.4161/bbug.1.3.11722 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dadami E, Moser M, Zwiebel M et al (2013) An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Lett 587:706–710. doi: 10.1016/j.febslet.2013.01.045 CrossRefPubMedGoogle Scholar
  9. 9.
    De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466. doi: 10.1007/BF02860827 CrossRefGoogle Scholar
  10. 10.
    Dunoyer P, Lecellier C-H, Parizotto EA et al (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250. doi: 10.1105/tpc.020719 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elomaa P, Helariutta Y, Griesbach RJ et al (1995) Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol Gen Genet 248:649–656CrossRefPubMedGoogle Scholar
  12. 12.
    Fan J, Liu X, Xu S-X et al (2011) T-DNA direct repeat and 35S promoter methylation affect transgene expression but do not cause silencing in transgenic sweet orange. Plant Cell Tissue Organ Cult 107:225–232. doi: 10.1007/s11240-011-9973-z CrossRefGoogle Scholar
  13. 13.
    Gambino G, Perrone I, Carra A et al (2009) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27. doi: 10.1007/s11248-009-9289-5 CrossRefPubMedGoogle Scholar
  14. 14.
    He X-J, Ma Z-Y, Liu Z-W (2014) Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis. Mol Plant 7:1406–1414. doi: 10.1093/mp/ssu075 CrossRefPubMedGoogle Scholar
  15. 15.
    Herr AJ, Molnar A, Jones A, Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci 103:14994–15001. doi: 10.1073/pnas.0606536103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628. doi: 10.3389/fpls.2014.00628 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kadauke S, Blobel GA (2009) Chromatin loops in gene regulation. Biochim Biophys Acta 1789:17–25. doi: 10.1016/j.bbagrm.2008.07.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim S-I, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791. doi: 10.1111/j.1365-313X.2007.03183.x CrossRefPubMedGoogle Scholar
  19. 19.
    Kishimoto N, Nagai J, Kinoshita T et al (2013) DNA elements reducing transcriptional gene silencing revealed by a novel screening strategy. PLoS One 8, e54670. doi: 10.1371/journal.pone.0054670 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kohli A, Twyman RM, Abranches R et al (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar S, Fladung M (2000) Determination of transgene repeat formation and promoter methylation in transgenic plants. Biotechniques 28:1128 1130, 1132, 1134 passimGoogle Scholar
  22. 22.
    Kumpatla SP, Chandrasekharan MB, Iyer LM et al (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104. doi: 10.1016/S1360-1385(97)01194-1 CrossRefGoogle Scholar
  23. 23.
    Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi: 10.1038/nrg2719 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759. doi: 10.1105/tpc.5.12.1749 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. Methods Mol Biol 1099:219–234. doi: 10.1007/978-1-62703-715-0_18 CrossRefPubMedGoogle Scholar
  26. 26.
    Liu W, Stewart CN (2015) Plant synthetic biology. Trends Plant Sci 20:309–317. doi: 10.1016/j.tplants.2015.02.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308. doi: 10.1016/j.bbagrm.2013.10.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Mathieu O, Bouché N (2014) Interplay between chromatin and RNA processing. Curr Opin Plant Biol 18:60–65. doi: 10.1016/j.pbi.2014.02.006 CrossRefPubMedGoogle Scholar
  29. 29.
    Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148CrossRefPubMedGoogle Scholar
  30. 30.
    Matzke MA, Matzke AJ (1998) Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol Life Sci 54:94–103CrossRefPubMedGoogle Scholar
  31. 31.
    Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. doi: 10.1038/nrg3683 CrossRefPubMedGoogle Scholar
  32. 32.
    Meyer P, Heidmann I (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol Gen Genet 243:390–399PubMedGoogle Scholar
  33. 33.
    Meyer P, Linn F, Heidmann I et al (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. MGG Mol Gen Genet 231:345–352. doi: 10.1007/BF00292701 CrossRefPubMedGoogle Scholar
  34. 34.
    Mishiba K, Nishihara M, Nakatsuka T et al (2005) Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J 44:541–556. doi: 10.1111/j.1365-313X.2005.02556.x CrossRefPubMedGoogle Scholar
  35. 35.
    Moreno AB, Martínez de Alba AE, Bardou F et al (2013) Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 41:4699–4708. doi: 10.1093/nar/gkt152 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289. doi: 10.1105/tpc.2.4.279 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Okumura A, Shimada A, Yamasaki S et al (2015) CaMV-35S promoter sequence-specific DNA methylation in lettuce. Plant Cell Rep. doi: 10.1007/s00299-015-1865-y PubMedGoogle Scholar
  38. 38.
    Petolino JF, Kumar S (2015) Transgenic trait deployment using designed nucleases. Plant Biotechnol J. doi: 10.1111/pbi.12457 PubMedGoogle Scholar
  39. 39.
    Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741. doi: 10.1111/tpj.12338 CrossRefPubMedGoogle Scholar
  40. 40.
    Siddiqui SA, Sarmiento C, Truve E et al (2008) Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Mol Plant Microbe Interact 21:178–187. doi: 10.1094/MPMI-21-2-0178 CrossRefPubMedGoogle Scholar
  41. 41.
    Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13–25. doi: 10.1007/s00299-011-1167-y CrossRefPubMedGoogle Scholar
  42. 42.
    Sohn S-H, Choi MS, Kim K-H, Lomonossoff G (2011) The epigenetic phenotypes in transgenic Nicotiana benthamiana for CaMV 35S-GFP are mediated by spontaneous transgene silencing. Plant Biotechnol Rep 5:273–281. doi: 10.1007/s11816-011-0182-3 CrossRefGoogle Scholar
  43. 43.
    Thompson WF, Spiker S, Allen GC (2007) Regulation of transcription in eukaryotes. In: Grasser KD (ed) Regulation of transcription in plants. Wiley-Blackwell, OxfordGoogle Scholar
  44. 44.
    Vaucheret H, Béclin C, Elmayan T et al (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659CrossRefPubMedGoogle Scholar
  45. 45.
    Villani ME, Morgun B, Brunetti P et al (2009) Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnol J 7:59–72. doi: 10.1111/j.1467-7652.2008.00371.x CrossRefPubMedGoogle Scholar
  46. 46.
    Weber H, Graessmann A (1989) Biological activity of hemimethylated and single-stranded DNA after direct gene transfer into tobacco protoplasts. FEBS Lett 253:163–166. doi: 10.1016/0014-5793(89)80951-2 CrossRefGoogle Scholar
  47. 47.
    Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99. doi: 10.1186/1471-2229-13-99 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    De Wilde C (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. In: Matzke MA, Matzke AJM (eds) Plant gene silencing. Springer, DordrechtGoogle Scholar
  49. 49.
    Wolffe AP (1997) Transcription control: repressed repeats express themselves. Curr Biol 7:R796–R798. doi: 10.1016/S0960-9822(06)00408-8 CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201. doi: 10.1016/j.cell.2006.08.003 CrossRefPubMedGoogle Scholar
  51. 51.
    Zorrilla-López U, Masip G, Arjó G et al (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576. doi: 10.1387/ijdb.130162pc CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Pozuelo de AlarcónSpain

Personalised recommendations