Skip to main content

Sustainable Assessment on Using Bacterial Platform to Produce High-Added-Value Products from Berries through Metabolic Engineering

  • Chapter
  • First Online:
Systems Biology Application in Synthetic Biology

Abstract

Berries are rich resources of secondary metabolites, particularly known for diverse phenolic compounds. These highly bioactive compounds can be developed into novel nutraceutical and pharmaceutical products, as well as high-added-value natural food additives. Compounds extracted from berries have, e.g., been used as colorants (e.g., anthocyanins) [1]. Meanwhile, some phenolics present in berries are of high added value due to their potential to develop into anticancer drugs (e.g., phenolic acids, flavonols, and flavanols) [2]. The antioxidation properties from berries also make them attractive research subject to develop more efficient nutraceutical products than the current crude extraction formulas (e.g., NutriPhy® Bilberry 100 from Chr. Hansen) [3, 4]. To exploit the full potential of the phenolic molecules from berries, a number of research projects have been conducted ranging from identification of bioactive compounds and elucidation of metabolic pathways (metabolic engineering them into suitable industrial production host cells) to eventually commercial production [3, 5–12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491

    Article  CAS  Google Scholar 

  2. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  4. Mélanie G, Sophie C (2013) Polyphenol-rich beverages promote a sustainable and renewable generation of energy and prevent neurotoxicity. Int J Nutr Metab 5:28–39

    Google Scholar 

  5. Barba FJ, Galanakis CM, Esteve MJ, Frigola A, Vorobiev E (2015) Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. J Food Eng 167:38–44

    Article  CAS  Google Scholar 

  6. Basu A, Rhone M, Lyons TJ (2010) Berries: emerging impact on cardiovascular health. Nutr Rev 68:168–177

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mellway RD, Constabel CP (2009) Metabolic engineering and potential functions of proanthocyanidins in poplar. Plant Signal Behav 4:790–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24:38–47

    Article  CAS  PubMed  Google Scholar 

  9. Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59:136–149

    Article  CAS  PubMed  Google Scholar 

  10. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  CAS  PubMed  Google Scholar 

  12. Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762

    Article  CAS  PubMed  Google Scholar 

  13. Invenire Market Intelligence (2008) Berries in the world. Available at http://www.sitra.fi/NR/rdonlyres/4A1F0F29-0B3C-458C-8843-D5436BEE6542/0/IMI08_Berriesintheworld.pdf

  14. ESD:N. Basics of SD strategies. Available at http://www.sd-network.eu/?k=basics%20of%20SD%20strategies

  15. OECD (2011) Draft OECD recommendation on assessing the sustainability of bio-based products. Available at http://www.oecd.org/sti/sci-tech/48222459.pdf

  16. Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jardim C, Menezes R, Foito A, Stewart D, Ferreira RB, Santos CN (2014) European summer school on nutrigenomics. September 1–5, 2014 Camerino, Italy: abstracts. J Nutrigenet Nutrigenomics 7:75–93

    Article  Google Scholar 

  18. Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58:302–311

    Article  CAS  PubMed  Google Scholar 

  19. Schreckinger ME, Lotton J, Lila MA, de Mejia EG (2010) Berries from South America: a comprehensive review on chemistry, health potential, and commercialization. J Med Food 13:233–246

    Article  CAS  PubMed  Google Scholar 

  20. Paredes-Lopez O, Cervantes-Ceja ML, Vigna-Perez M, Hernandez-Perez T (2010) Berries: improving human health and healthy aging, and promoting quality life – a review. Plant Foods Hum Nutr 65:299–308

    Article  CAS  PubMed  Google Scholar 

  21. Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  CAS  PubMed  Google Scholar 

  23. Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71:3617–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nwafor CC, Gribaudo I, Schneider A, Wehrens R, Grando MS, Costantini L (2014) Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant. BMC Genomics 15, e1030

    Article  Google Scholar 

  25. Donnez D, Jeandet P, Clement C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  PubMed  Google Scholar 

  26. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  PubMed  Google Scholar 

  28. Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11

    Article  PubMed  Google Scholar 

  29. Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, Neves AR, Forster J (2015) Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng 31:84–93

    Article  CAS  PubMed  Google Scholar 

  30. Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2015) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881

    Article  PubMed  Google Scholar 

  31. Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49

    CAS  PubMed  Google Scholar 

  32. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  33. ISO (2006) Environmental management -lifecycle assessment -requirements and guidelines (ISO 14044: 2006). In STANDARDIZATION ECF, ed. Brussels, Belgium

    Google Scholar 

  34. ISO (2006) Environmental management—life cycle assessment—principles and framework (ISO 14040: 2006)

    Google Scholar 

  35. JRC (2009) International Reference Life Cycle Reference Data System (ILCD) handbook. Available at http://eplca.jrc.ec.europa.eu/uploads/JRC-Reference-Report-ILCD-Handbook-Towards-more-sustainable-production-and-consumption-for-a-resource-efficient-Europe.pdf

  36. JRC (2010) Framework and requirements for Life Cycle Impact Assessment (LCIA) models and indicators. Available at http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Framework-Requirements-ONLINE-March-2010-ISBN-fin-v1.0-EN.pdf

  37. JRC (2010) Analysis of existing environmental impact assessment methodologies for use in Life Cycle Assessment (LCA). Available at http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf

  38. JRC (2011) Recommendations for life cycle impact assessment in the European context. Available at http://eplca.jrc.ec.europa.eu/uploads/ILCD-Recommendation-of-methods-for-LCIA-def.pdf

  39. Galanakis CM, Goulas V, Tsakona S, Manganaris GA, Gekas V (2013) A knowledge base for the recovery of natural phenols with different solvents. Int J Food Prop 16:382–396

    Article  CAS  Google Scholar 

  40. Kyriakopoulou K, Papadaki S, Krokida M (2015) Life cycle analysis of β-carotene extraction techniques. J Food Eng 167:51–58

    Article  CAS  Google Scholar 

  41. Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274

    Article  CAS  Google Scholar 

  42. Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41:7915–7921

    Article  CAS  PubMed  Google Scholar 

  43. CSES (2011) Final evaluation of the lead market initiative. Available at http://ec.europa.eu/enterprise/policies/innovation/policy/lead-market-initiative/final-eval_en.htm

  44. COGEM (2009) Socio-economic aspects of GMOs. Available at http://ec.europa.eu/food/food/biotechnology/reports_studies/docs/Netherlands_annex_Cogem_report_en.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Pei, L., Schmidt, M. (2016). Sustainable Assessment on Using Bacterial Platform to Produce High-Added-Value Products from Berries through Metabolic Engineering. In: Singh, S. (eds) Systems Biology Application in Synthetic Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2809-7_6

Download citation

Publish with us

Policies and ethics