Structureomics in Systems-Based Drug Discovery

  • Lumbini R. Yadav
  • Pankaj Thapa
  • Lipi Das
  • Ashok K. Varma


Selection of the appropriate drug target is crucial and furthermore its association with small molecule binding partners is the subject of extensive studies. Drug discovery has evolved from the traditional serendipity to system based approaches of using the three dimensional structures of biological molecules. This chapter provides a brief description about the contribution of large number of proteins structures in drug discovery. This further elucidates the target selection and its role in reducing the time and efforts required for drug development.


Nuclear Magnetic Resonance Drug Discovery Nuclear Magnetic Resonance Spectroscopy Lead Molecule Solution Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Structure-based drug designing


Absorption distribution, metabolism, and excretion


Scanning electron microscopy


Transmission electron microscopy


X-ray diffractometer


Protein structure initiative


Structural Genomics Consortium


  1. 1.
    Banaszak LJ (2000) Foundations of structural biology. Academic, San DiegoGoogle Scholar
  2. 2.
    Goodsell DS (2011) Atomic evidence: the foundations of structural molecular biology. Sci Prog 94:414–430PubMedCrossRefGoogle Scholar
  3. 3.
    Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kurosawa G, Akahori Y, Morita M, Sumitomo M, Sato N, Muramatsu C, Eguchi K, Matsuda K, Takasaki A, Tanaka M, Iba Y, Hamada-Tsutsumi S, Ukai Y, Shiraishi M, Suzuki K, Kurosawa M, Fujiyama S, Takahashi N, Kato R, Mizoguchi Y, Shamoto M, Tsuda H, Sugiura M, Hattori Y, Miyakawa S, Shiroki R, Hoshinaga K, Hayashi N, Sugioka A, Kurosawa Y (2008) Comprehensive screening for antigens overexpressed on carcinomas via isolation of human mAbs that may be therapeutic. Proc Natl Acad Sci U S A 105:7287–7292PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zanders ED, Bailey DS, Dean PM (2002) Probes for chemical genomics by design. Drug Discov Today 7:711–718PubMedCrossRefGoogle Scholar
  6. 6.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341PubMedCrossRefGoogle Scholar
  7. 7.
    Golebiowski A, Klopfenstein SR, Portlock DE (2003) Lead compounds discovered from libraries: part 2. Curr Opin Chem Biol 7:308–325PubMedCrossRefGoogle Scholar
  8. 8.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17CrossRefGoogle Scholar
  9. 9.
    Hajduk PJ, Galloway WR, Spring DR (2011) Drug discovery: a question of library design. Nature 470:42–43PubMedCrossRefGoogle Scholar
  10. 10.
    Verdonk ML, Hartshorn MJ (2004) Structure-guided fragment screening for lead discovery. Curr Opin Drug Discov Devel 7:404–410PubMedGoogle Scholar
  11. 11.
    Campbell SF (2000) Science, art and drug discovery: a personal perspective. Clin Sci (Lond) 99:255–260CrossRefGoogle Scholar
  12. 12.
    Chou JJ, Kaufman JD, Stahl SJ, Wingfield PT, Bax A (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J Am Chem Soc 124:2450–2451PubMedCrossRefGoogle Scholar
  13. 13.
    Stoll V, Qin W, Stewart KD, Jakob C, Park C, Walter K, Simmer RL, Helfrich R, Bussiere D, Kao J, Kempf D, Sham HL, Norbeck DW (2002) X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. Bioorg Med Chem 10:2803–2806PubMedCrossRefGoogle Scholar
  14. 14.
    Davis AM, Teague SJ, Kleywegt GJ (2003) Application and limitations of X‐ray crystallographic data in structure‐based ligand and drug design. Angew Chem Int Ed Engl 42:2718–2736PubMedCrossRefGoogle Scholar
  15. 15.
    Shoichet B, Bussiere D (2000) Macromolecular crystallography and lead discovery: possibilities and limitations. J Mol Biol 295:337–356CrossRefGoogle Scholar
  16. 16.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11:873–886PubMedCrossRefGoogle Scholar
  17. 17.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non — small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139PubMedCrossRefGoogle Scholar
  18. 18.
    Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246:1149–1152PubMedCrossRefGoogle Scholar
  19. 19.
    Lapatto R, Blundell T, Hemmings A, Overington J, Wilderspin A, Wood S, Merson JR, Whittle PJ, Danley DE, Geoghegan KF (1989) X-ray analysis of HIV-1 proteinase at 2.7 a resolution confirms structural homology among retroviral enzymes. Nature 342:299–302PubMedCrossRefGoogle Scholar
  20. 20.
    Wong S, Witte ON (2004) The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22:247–306PubMedCrossRefGoogle Scholar
  21. 21.
    Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652–6659PubMedCrossRefGoogle Scholar
  22. 22.
    Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S (2007) Crystal structure of plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosyl-methionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 373:167–177Google Scholar
  23. 23.
    Varghese JN (1999) Development of neuraminidase inhibitors as anti-influenza virus drugs. Drug Dev Res 46:176–196CrossRefGoogle Scholar
  24. 24.
    Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HH, Vincent PW, Elliott WL (2000) Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino) quinazoline-and 4-(phenylamino) pyrido [3, 2-d] pyrimidine-6-acrylamides bearing additional solubilizing functions. J Med Chem 43:1380–1397PubMedCrossRefGoogle Scholar
  25. 25.
    Cario H, Smith DE, Blom H, Blau N, Bode H, Holzmann K, Pannicke U, Hopfner K-P, Rump E-M, Ayric Z (2011) Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet 88:226–231PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schweitzer BI, Dicker AP, Bertino JR (1990) Dihydrofolate reductase as a therapeutic target. FASEB J 4:2441–2452PubMedGoogle Scholar
  27. 27.
    Sharma M, Chauhan PM (2012) Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future med chem 4:1335–1365PubMedCrossRefGoogle Scholar
  28. 28.
    Patick A, Binford S, Brothers M, Jackson R, Ford C, Diem M, Maldonado F, Dragovich P, Zhou R, Prins T (1999) In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 43:2444–2450PubMedPubMedCentralGoogle Scholar
  29. 29.
    Masuda Y, Karasawa T (1993) Inhibitory effect of zonisamide on human carbonic anhydrase in vitro. Arzneimittelforschung 43:416–418PubMedGoogle Scholar
  30. 30.
    Bissett D, O’Byrne KJ, Von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non–small-cell lung cancer. J Clin Oncol 23:842–849PubMedCrossRefGoogle Scholar
  31. 31.
    Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, DiCioccio AT, Petrova T (2005) Discovery of 3-[(4, 5, 7-trifluorobenzothiazol-2-yl) methyl] indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 48:3141–3152PubMedCrossRefGoogle Scholar
  32. 32.
    McPherson A (2004) Protein crystallization in the structural genomics era. J Struct Funct Genom 5:3–12CrossRefGoogle Scholar
  33. 33.
    Dale GE, Oefner C, D’Arcy A (2003) The protein as a variable in protein crystallization. J Struct Biol 142:88–97PubMedCrossRefGoogle Scholar
  34. 34.
    Acharya KR, Lloyd MD (2005) The advantages and limitations of protein crystal structures. Trends Pharmacol Sci 26:10–14PubMedCrossRefGoogle Scholar
  35. 35.
    Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797PubMedCrossRefGoogle Scholar
  36. 36.
    Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK (2010) Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 5:e12029PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722PubMedCrossRefGoogle Scholar
  38. 38.
    Joseph-McCarthy D (2009) Challenges of fragment screening. J Comput Aided Mol Des 23:449–451PubMedCrossRefGoogle Scholar
  39. 39.
    Song Y, Chen W, Kang D, Zhang Q, Zhan P, Liu X (2014) “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen 17:536–553PubMedCrossRefGoogle Scholar
  40. 40.
    Chen H, Zhou X, Wang A, Zheng Y, Gao Y, Zhou J (2015) Evolutions in fragment-based drug design: the deconstruction–reconstruction approach. Drug Discov Today 20:105–113PubMedCrossRefGoogle Scholar
  41. 41.
    Song Y, Zhan P, Liu X (2013) Heterocycle-thioacetic acid motif: a privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr Pharm Des 19:7141–7154PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Y, Zhou E, Yu K, Zhu J, Zhang Y, Xie X, Li J, Jiang H (2008) Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules 13:2426–2441PubMedCrossRefGoogle Scholar
  43. 43.
    Viegas-Júnior C, Danuello A, da Silva Bolzani V, Barreiro EJ, Fraga CAM (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852PubMedCrossRefGoogle Scholar
  44. 44.
    Manetsch R, Krasinski A, Radic Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) In situ click chemistry: enzyme inhibitors made to their own specifications. J Am Chem Soc 126:12809–12818PubMedCrossRefGoogle Scholar
  45. 45.
    Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chem Rev 113:4905–4979PubMedCrossRefGoogle Scholar
  46. 46.
    Brik A, Wu C-Y, Wong C-H (2006) Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. Org biomol chem 4:1446–1457PubMedCrossRefGoogle Scholar
  47. 47.
    Hubbard RE (2008) Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 15:227–230PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219PubMedCrossRefGoogle Scholar
  49. 49.
    Ji H, Zhang W, Zhang M, Kudo M, Aoyama Y, Yoshida Y, Sheng C, Song Y, Yang S, Zhou Y, Lu J, Zhu J (2003) Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem 46:474–485PubMedCrossRefGoogle Scholar
  50. 50.
    Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44:4615–4627PubMedCrossRefGoogle Scholar
  51. 51.
    Schmidt JM, Mercure J, Tremblay GB, Page M, Kalbakji A, Feher M, Dunn-Dufault R, Peter MG, Redden PR (2003) De novo design, synthesis, and evaluation of novel nonsteroidal phenanthrene ligands for the estrogen receptor. J Med Chem 46:1408–1418PubMedCrossRefGoogle Scholar
  52. 52.
    Pierce AC, Rao G, Bemis GW (2004) BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J Med Chem 47:2768–2775PubMedCrossRefGoogle Scholar
  53. 53.
    Lloyd DG, Buenemann CL, Todorov NP, Manallack DT, Dean PM (2004) Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J Med Chem 47:493–496PubMedCrossRefGoogle Scholar
  54. 54.
    Rich K (2004) An overview of clinical trials. J Vasc Nurs 22:32–34PubMedCrossRefGoogle Scholar
  55. 55.
    Liang BC (2002) The drug development process III: phase IV clinical trials. Hosp Physician 38:42Google Scholar
  56. 56.
    Sims J, Miracle VA (2002) Phases of a clinical trial. Dimens Crit Care Nurs 21:152–153PubMedCrossRefGoogle Scholar
  57. 57.
    Kim SH (1998) Shining a light on structural genomics. Nat Struct Biol 5(Suppl):643–645PubMedCrossRefGoogle Scholar
  58. 58.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996PubMedCrossRefGoogle Scholar
  59. 59.
    Guss JM, Merritt EA, Phizackerley RP, Hedman B, Murata M, Hodgson KO, Freeman HC (1988) Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers. Science 241:806–811PubMedCrossRefGoogle Scholar
  60. 60.
    Abola E, Kuhn P, Earnest T, Stevens RC (2000) Automation of X-ray crystallography. Nat Struct Biol 7(Suppl):973–977PubMedCrossRefGoogle Scholar
  61. 61.
    Muchmore SW, Olson J, Jones R, Pan J, Blum M, Greer J, Merrick SM, Magdalinos P, Nienaber VL (2000) Automated crystal mounting and data collection for protein crystallography. Structure 8:R243–R246PubMedCrossRefGoogle Scholar
  62. 62.
    Adams PD, Grosse-Kunstleve RW (2000) Recent developments in software for the automation of crystallographic macromolecular structure determination. Curr Opin Struct Biol 10:564–568PubMedCrossRefGoogle Scholar
  63. 63.
    Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011:207691PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2014) GenBank. Nucleic Acids Res 42:D32–D37PubMedCrossRefGoogle Scholar
  65. 65.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  66. 66.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bork P (2000) Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res 10:398–400PubMedCrossRefGoogle Scholar
  68. 68.
    Baumann U, Wu S, Flaherty KM, McKay DB (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12:3357–3364PubMedPubMedCentralGoogle Scholar
  69. 69.
    Friedberg I (2006) Automated protein function prediction--the genomic challenge. Brief Bioinform 7:225–242PubMedCrossRefGoogle Scholar
  70. 70.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230PubMedCrossRefGoogle Scholar
  71. 71.
    Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249PubMedCrossRefGoogle Scholar
  72. 72.
    Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Attwood TK, Coletta A, Muirhead G, Pavlopoulou A, Philippou PB, Popov I, Roma-Mateo C, Theodosiou A, Mitchell AL (2012) The PRINTS database: a fine-grained protein sequence annotation and analysis resource–its status in 2012, Database (Oxford) 2012 bas019.Google Scholar
  74. 74.
    Norin M, Sundstrom M (2002) Structural proteomics: developments in structure-to-function predictions. Trends Biotechnol 20:79–84PubMedCrossRefGoogle Scholar
  75. 75.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  76. 76.
    Hardin C, Pogorelov TV, Luthey-Schulten Z (2002) Ab initio protein structure prediction. Curr Opin Struct Biol 12:176–181PubMedCrossRefGoogle Scholar
  77. 77.
    Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein function from sequence and structural data. Curr Opin Struct Biol 15:275–284PubMedCrossRefGoogle Scholar
  78. 78.
    Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123–138PubMedCrossRefGoogle Scholar
  79. 79.
    Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268PubMedCrossRefGoogle Scholar
  80. 80.
    Madej T, Gibrat JF, Bryant SH (1995) Threading a database of protein cores. Proteins 23:356–369PubMedCrossRefGoogle Scholar
  81. 81.
    Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res 32:W555–W558PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M (2004) SURFACE: a database of protein surface regions for functional annotation. Nucleic Acids Res 32:D240–D244PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tsuchiya Y, Kinoshita K, Nakamura H (2005) PreDs: a server for predicting dsDNA-binding site on protein molecular surfaces. Bioinformatics 21:1721–1723PubMedCrossRefGoogle Scholar
  84. 84.
    Tuszynska I, Magnus M, Jonak K, Dawson W, Bujnicki JM (2015) NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res 43:W425–W430PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Khandelia P, Yap K, Makeyev EV (2011) Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells. Proc Natl Acad Sci U S A 108:12799–12804PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Murphy GE, Jensen GJ (2007) Electron cryotomography. Biotechniques 43:413, 415, 417 passimPubMedCrossRefGoogle Scholar
  87. 87.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J (2000) The protein data bank and the challenge of structural genomics. Nat Struct Biol 7(Suppl):957–959PubMedCrossRefGoogle Scholar
  89. 89.
    Jonic S, Venien-Bryan C (2009) Protein structure determination by electron cryo-microscopy. Curr Opin Pharmacol 9:636–642PubMedCrossRefGoogle Scholar
  90. 90.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929PubMedCrossRefGoogle Scholar
  91. 91.
    Kuhlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621PubMedCrossRefGoogle Scholar
  92. 92.
    Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203PubMedCrossRefGoogle Scholar
  93. 93.
    Kuhlbrandt W (2014) Cryo-EM enters a new era. Elife 3:e03678PubMedPubMedCentralGoogle Scholar
  94. 94.
    Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–51PubMedCrossRefGoogle Scholar
  95. 95.
    Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909PubMedCrossRefGoogle Scholar
  96. 96.
    Yee A, Pardee K, Christendat D, Savchenko A, Edwards AM, Arrowsmith CH (2003) Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Acc Chem Res 36:183–189PubMedCrossRefGoogle Scholar
  97. 97.
    Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci 99:11664–11669PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Puri M, Robin G, Cowieson N, Forwood JK, Listwan P, Hu SH, Guncar G, Huber T, Kellie S, Hume DA, Kobe B, Martin JL (2006) Focusing in on structural genomics: the University of Queensland structural biology pipeline. Biomol Eng 23:281–289PubMedCrossRefGoogle Scholar
  99. 99.
    Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351PubMedCrossRefGoogle Scholar
  100. 100.
    Berman HM, Westbrook JD, Gabanyi MJ, Tao W, Shah R, Kouranov A, Schwede T, Arnold K, Kiefer F, Bordoli L, Kopp J, Podvinec M, Adams PD, Carter LG, Minor W, Nair R, La Baer J (2009) The protein structure initiative structural genomics knowledgebase. Nucleic Acids Res 37:D365–D368PubMedCrossRefGoogle Scholar
  101. 101.
    Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Baker EN (2007) Structural genomics as an approach towards understanding the biology of tuberculosis. J Struct Funct Genom 8:57–65CrossRefGoogle Scholar
  103. 103.
    Nair R, Liu J, Soong T-T, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genom 10:181–191CrossRefGoogle Scholar
  104. 104.
    Edwards A (2009) Large-scale structural biology of the human proteome. Annu Rev Biochem 78:541–568PubMedCrossRefGoogle Scholar
  105. 105.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172PubMedPubMedCentralGoogle Scholar
  106. 106.
    Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedPubMedCentralGoogle Scholar
  107. 107.
    Russell RB, Eggleston DS (2000) New roles for structure in biology and drug discovery. Nat Struct Biol 7(Suppl):928–930PubMedCrossRefGoogle Scholar
  108. 108.
    Hol WG (2000) Structural genomics for science and society. Nat Struct Biol 7(Suppl):964–966PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Lumbini R. Yadav
    • 1
  • Pankaj Thapa
    • 1
  • Lipi Das
    • 1
  • Ashok K. Varma
    • 1
  1. 1.Varma LabAdvanced Centre for Treatment, Research and Education in CancerKhargharIndia

Personalised recommendations