Advertisement

Epigenetics Moving Towards Systems Biology

  • Arif Malik
  • Misbah Sultana
  • Aamer Qazi
  • Mahmood Husain Qazi
  • Mohammad Sarwar Jamal
  • Mahmood Rasool
Chapter

Abstract

Inherited information like sequences of DNA has been restricted to fully explicate mechanisms of regulating genes and processes of disease. Epigenetic, remodeling of chromatin and DNA modifications comprise key mechanisms for regulating expression of genes, environmental changes and genetic sensitivity for alterations in neural function and behavioral characteristics. Epigenetic regulation plays an important role in different human diseases i.e. autoimmune disease, cancer and diabetes mellitus. Although researchers have actively focused to investigate epigenetic in the area of biology and medicine, still understanding of epigenetic change is crucial for the development of new therapeutic techniques.

Keywords

Histone Deacetylase Lysine Residue Epigenetic Modification Histone Tail Linker Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Seo JY, Park YJ, Yi YA, Hwang JY, Lee IB, Cho BH, Son HH, Seo DG (2015) Epigenetics: general characteristics and implications for oral health. Restor Dent Endod 40:14–22CrossRefPubMedGoogle Scholar
  2. 2.
    Holiday R (1987) The inheritance of epigenetic defects. Science 238:163–170CrossRefGoogle Scholar
  3. 3.
    Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes place. Cell 128:635–638CrossRefPubMedGoogle Scholar
  4. 4.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783Google Scholar
  5. 5.
    Bayarsaihan D (2011) Epigenetic mechanism in inflammation. J Dent Res 90:9–17CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lod S, Johansson T, Abrahamsson KH, Larsson L (2014) The influence of epigenetics in relation to oral health. Int J Dent Hyg 12:48–54CrossRefPubMedGoogle Scholar
  8. 8.
    Doerfler W, Toth M, Kochanek S, Achten S, Freisem-Rabien U, Behn-Krappa A (1990) Eukaryotic DNA methylation: facts and problems. FEBS Lett 268:329–333CrossRefPubMedGoogle Scholar
  9. 9.
    Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetics states. Science 330:612–680CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Efstratiadis A (1994) Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev 4:265–280CrossRefPubMedGoogle Scholar
  12. 12.
    Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365CrossRefPubMedGoogle Scholar
  13. 13.
    Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330Google Scholar
  14. 14.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159CrossRefPubMedGoogle Scholar
  15. 15.
    Gama-Sosa MA, Slagel VA, Trewyn RW, Oxahandler R, Kuo KC, Gehrke CW (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92CrossRefPubMedGoogle Scholar
  17. 17.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 20:1057–1068CrossRefGoogle Scholar
  18. 18.
    Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56PubMedGoogle Scholar
  19. 19.
    Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chembiochem 12:206–222CrossRefPubMedGoogle Scholar
  21. 21.
    Chedin R, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by DNMT3a. Proc Natl Acad Sci U S A 99:16916–16921CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y (2002) DNMT3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30:3831–3838CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Aapola U, Liiv I, Peterson P (2002) Imprinting regular DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30:3602–3608CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 4:80CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Law JA, Jacobsen SE (2010) Establishing maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y (2009) Conversion of 5-methylcytosine to 5-hydroxymethycytosine in mammalian DNA by MLL partnet TET1. Science 324:930–935CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kriaucionis S, Tahiliani M (2014) Expanding the epigenetic landscape: novel modifications of cytosine in genomic DNA. Cold Spring Harb Perspect Biol 6:a018630CrossRefPubMedGoogle Scholar
  29. 29.
    Li CJ (2013) DNA demethylation pathways: recent insights. Genet Epigenet 5:43–49CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ito S, Shen L, Dai Q, Collins LB, Wu SC, Swenberg JA (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Murr R (2010) Interplay between different epigenetic modifications and mechanisms. Adv Genet 70:101–141PubMedGoogle Scholar
  32. 32.
    Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287:33116–33121CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  34. 34.
    Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefPubMedGoogle Scholar
  36. 36.
    Urnov FD, Wolffe AP (2001) Above and within the genome epigenetics past and present. J Mammary Gland Biol Neoplasia 6:153–167CrossRefPubMedGoogle Scholar
  37. 37.
    Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK (2007) The landscape of histone modifications across 1% of the human genome in five in five human cell lines. Genome Res 17:691–707CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefPubMedGoogle Scholar
  39. 39.
    Vermaak D, Steinbach OC, Dimitrov S, Rupp RA, Wolffle AP (1998) The globular domain of histone H1 is sufficient to direct specific gene expression in early Xenopus embryos. Curr Biol 8:533–536CrossRefPubMedGoogle Scholar
  40. 40.
    Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627–643CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cheung WL, Briggs SD, Allis CD (2000) Acetylation and chromosomal functions. Curr Opin Cell Biol 12:326–333CrossRefPubMedGoogle Scholar
  42. 42.
    Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grunstein M (1997) Histone acetylation in chromat in structure and transcription. Nature 389:349–352CrossRefPubMedGoogle Scholar
  44. 44.
    Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6:176–184CrossRefPubMedGoogle Scholar
  45. 45.
    Wade PA, Wolffe AP (1997) Histone actyltransferases in control. Curr Biol 7:R82–R84CrossRefPubMedGoogle Scholar
  46. 46.
    Yang XJ, Seto E (2008) The Rpd3/Hdal family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yang XJ (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26:1076–1087CrossRefPubMedGoogle Scholar
  48. 48.
    Mujtaba S, Zeng L, Zhou MM (2007) Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26:5521–5527CrossRefPubMedGoogle Scholar
  49. 49.
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496CrossRefPubMedGoogle Scholar
  50. 50.
    Dyson MH, Rose S, Mahadevan LC (2001) Acetylation-binding and function of bromodomain-containing proteins in chromatin. Front Biosci 6:D853–D865CrossRefPubMedGoogle Scholar
  51. 51.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 7:81–120CrossRefGoogle Scholar
  52. 52.
    Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure and catalysis. Curr Opin Genet Dev 11:155–161CrossRefPubMedGoogle Scholar
  53. 53.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size dosen’t fit all. Nat Rev Mol Cell Biol 8:284–295CrossRefPubMedGoogle Scholar
  54. 54.
    Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289CrossRefPubMedGoogle Scholar
  55. 55.
    Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome aacetylation. Genes Dev 7:592–604CrossRefPubMedGoogle Scholar
  56. 56.
    Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835CrossRefPubMedGoogle Scholar
  57. 57.
    de Rujiter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749CrossRefGoogle Scholar
  58. 58.
    Longworth MS, Laimins LA (2006) Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Srcc. Oncogene 25:4495–4500CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang G, Pradhan S (2014) Mammalian epigenetic mechanisms. IUMBM Life 66:240–256CrossRefPubMedGoogle Scholar
  60. 60.
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412CrossRefPubMedGoogle Scholar
  61. 61.
    Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19:542–552CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wood A, Shilated A (2004) Posttranslational modifications of histones by methylation. In: Ronald CC, Joan Weliky C (eds). Adv protein chem 67:201–222Google Scholar
  64. 64.
    Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318CrossRefPubMedGoogle Scholar
  65. 65.
    Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27:406–420CrossRefPubMedGoogle Scholar
  66. 66.
    Steger DJ, Leftrova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20:662–671CrossRefPubMedGoogle Scholar
  68. 68.
    Allfrey VG, Mirsky AE (1964) Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144:559CrossRefPubMedGoogle Scholar
  69. 69.
    Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15CrossRefPubMedGoogle Scholar
  70. 70.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA (2004) Histone demethylation mediated by the nuclear amine oxiadase homolog LSD1. Cell 119:941–953CrossRefPubMedGoogle Scholar
  71. 71.
    Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Moore KE, Gozani O (2014) An unexpected journey: lysine methylation across the proteome. Biochim Biophys Acta 1839:1395–1403CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ (2014) Targeting histone lysine demethylases-progress, challenges and the future. Biochim Biophys Acta 1839:1416–1432CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shi YG, Tsukada Y (2013) The discovery of histone demethylases. Cold Spring Harb Perspect Biol 3:5Google Scholar
  76. 76.
    Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation : a chromatin modification involved in diverse nuclear events. Epigenetics 7:1098–1108CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926CrossRefPubMedGoogle Scholar
  78. 78.
    Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phoshorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tctrehymena. Proc Natl Acad Sci U S A 5:7480–7484CrossRefGoogle Scholar
  79. 79.
    Suave DM, Anderson HJ, Ray JM, James WM, Roberge M (1999) Phosphorylation-induced rearrangement of the histone H3 NH2-terminal domain during mitotic chromosome condensation. J Cell Biol 145:225–235CrossRefGoogle Scholar
  80. 80.
    de la Barre AE, Gerson V, Gout S, Creaven M, Allis CD, Dimiitrov S (2000) Core histone N-terminal play an essential role in mitotic chromosome condensation. EMBO J 19:379–391CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82:47–56CrossRefPubMedGoogle Scholar
  82. 82.
    Dasso M, Dimitrov S, Wolffe AP (1994) Nuclear assembly is independent of linker histones. Proc Natl Acad Sci U S A 91:12477–12481CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Talbert PB, Henikoff S (2006) Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7(10):793–803CrossRefPubMedGoogle Scholar
  84. 84.
    Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432CrossRefPubMedGoogle Scholar
  85. 85.
    Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, Best L, Gangi L, Munroe D, Mueqqe K (2004) Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 32:5019–5028CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719CrossRefPubMedGoogle Scholar
  87. 87.
    Guo H, Ingolia NT, Weisssman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Katsnelson A (2010) Epigenome effort makes its mark. Nature 467:646CrossRefPubMedGoogle Scholar
  89. 89.
    Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–440CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Reik W, Walter J (1998) Imprinting mechanisms in mammals. Curr Opin Genet Dev 8:154–164CrossRefPubMedGoogle Scholar
  91. 91.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for denovo methylation and mammalian development. Cell 99:547–557CrossRefGoogle Scholar
  92. 92.
    Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213:384–390CrossRefPubMedGoogle Scholar
  93. 93.
    Ansel KM, Lee DU, Rao A (2003) An epigenetic view of helper T cell differentiation. Nat Immunol 4:616–623CrossRefPubMedGoogle Scholar
  94. 94.
    Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia. J Nutr 135:5–8PubMedGoogle Scholar
  95. 95.
    Barker D, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31:1235–1239CrossRefPubMedGoogle Scholar
  96. 96.
    Razin A, Shemer R (1995) DNA methylation inearly development. Hum Mol Genet 4:1751–1755PubMedGoogle Scholar
  97. 97.
    Ito K (2007) Impact of post-translational modifications of proteins on the inflammatory process. Biochem Soc Trans 35:281–283CrossRefPubMedGoogle Scholar
  98. 98.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054CrossRefPubMedGoogle Scholar
  99. 99.
    Breivk J, Gaudernack G (1999) Genomic instability, DNA methylation and natural selection in colorectal carcinogenesis. Semin Cancer Biol 9:245–254CrossRefGoogle Scholar
  100. 100.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kerata MS, Botello ZM, Ennis JJ, Chou C, Chedin F (2006) Reconstruction and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281:25893–25902CrossRefGoogle Scholar
  102. 102.
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Arif Malik
    • 1
  • Misbah Sultana
    • 1
  • Aamer Qazi
    • 2
  • Mahmood Husain Qazi
    • 2
  • Mohammad Sarwar Jamal
    • 3
  • Mahmood Rasool
    • 4
  1. 1.Institute of Molecular Biology and Biotechnology (IMBB)The University of LahoreLahorePakistan
  2. 2.Center for Research in Molecular Medicine (CRiMM)The University of LahoreLahorePakistan
  3. 3.King Fahd Medical Research Center (KFMRC)King Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Center of Excellence in Genomic Medicine Research (CEGMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations