Microbial Chassis Assisting Retrosynthesis

  • Milsee Mol
  • Vineetha Mandlik
  • Shailza Singh


Synthetic biology has come a long way from constructing simple regulatory element to de novo pathway construction in heterologous host chassis. This is achieved by the transfer of the desired pathway from a rare organism to an organism that can be readily genetically engineered. These developments have great potential for application in biosynthesis of drugs, biofuels and bulk chemicals from simple and inexpensive starting material. As the complexity within a re-engineered system increases, there is an increasing need for efficient computational tools that can support them. Myriad of algorithms are available and are being developed that aid the re-engineering of pathways that help select and prioritize pathways, optimize enzyme performance, select parts for constructing the pathway, metabolic modelling and flux analysis and final integration into the chassis. This chapter gives a gist into the development of de novo pathway, the bioinformatics tools available, future challenges and research efforts needed for the implementation of synthetic biology for the production of key metabolites.


Synthetic Biology Flux Balance Analysis Artemisinic Acid Synthetic Biologist Methyl Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schwille P, Diez S (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol 44(4):223–242CrossRefPubMedGoogle Scholar
  2. 2.
    Porcar M, Danchin A, de Lorenzo V, Dos Santos VA, Krasnogor N, Rasmussen S, Moya A (2011) The ten grand challenges of synthetic life. Syst Synth Biol 5(1–2):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103(2):425–430CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, Smith HO, Venter JC (2007) Genome transplantation in bacteria: changing one species to another. Science 317(5838):632–638CrossRefPubMedGoogle Scholar
  5. 5.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56CrossRefPubMedGoogle Scholar
  6. 6.
    McArthur GH, Fong SS (2009) Toward engineering synthetic microbial metabolism. BioMed Res Int 14:2010Google Scholar
  7. 7.
    Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci 93(19):10268–10273CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang LY, Chang SH, Wang J (2010) How to make a minimal genome for synthetic minimal cell. Protein Cell 1(5):427–434CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Acevedo-Rocha CG, Fang G, Schmidt M, Ussery DW, Danchin A (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29(5):273–279CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–7935CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K (2008) Large‐scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69(1):67–76CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Forsyth R, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown‐Driver V, Froelich JM, King P (2002) A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43(6):1387–1400CrossRefPubMedGoogle Scholar
  13. 13.
    Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163CrossRefPubMedGoogle Scholar
  14. 14.
    Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci 100(8):4678–4683CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fehér T, Papp B, Pál C, Pósfai G (2007) Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107(8):3498–3513CrossRefPubMedGoogle Scholar
  16. 16.
    Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4(10):e1000210CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Christian N, May P, Kempa S, Handorf T, Ebenhöh O (2009) An integrative approach towards completing genome-scale metabolic networks. Mol BioSyst 5(12):1889–1903CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325(5947):1544–1549CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897CrossRefPubMedGoogle Scholar
  20. 20.
    Holzhütter S, Holzhütter HG (2004) Computational design of reduced metabolic networks. Chembiochem 5(10):1401–1422CrossRefPubMedGoogle Scholar
  21. 21.
    Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 109:572–582CrossRefPubMedGoogle Scholar
  22. 22.
    Carbonell P, Planson AG, Fichera D, Faulon JL (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cho A, Yun H, Park JHH, Lee SYY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bachmann BO (2010) Biosynthesis: is it time to go retro? Nat Chem Biol 6:390–393CrossRefPubMedGoogle Scholar
  25. 25.
    Cook A, Johnson P, Law J, Mirzazadeh M, Ravitz O, Simon A (2012) Computer-aided synthesis design: 40 years on. WIREs Comput Mol Sci 2:79–107CrossRefGoogle Scholar
  26. 26.
    Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130CrossRefPubMedGoogle Scholar
  27. 27.
    Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci 104(19):7797–7802CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802CrossRefPubMedGoogle Scholar
  29. 29.
    Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74(10):3229–3241CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568CrossRefPubMedGoogle Scholar
  31. 31.
    Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9(1):1CrossRefGoogle Scholar
  32. 32.
    Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH (2011) Standard biological parts knowledgebase. PLoS ONE 6(2):e17005CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9(2):131–137CrossRefPubMedGoogle Scholar
  34. 34.
    Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2010) First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. ChemBioChem 11(11):1508–1512CrossRefPubMedGoogle Scholar
  35. 35.
    Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21(8):1603–1609CrossRefPubMedGoogle Scholar
  36. 36.
    Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24(21):2554–2556CrossRefPubMedGoogle Scholar
  37. 37.
    Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37(suppl 2):W129–W134CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang K, Neumann H, Peak-Chew SY, Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25(7):770–777CrossRefPubMedGoogle Scholar
  40. 40.
    Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC (2009) Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS ONE 4(11):e7979CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(suppl 2):W339–W346CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30(1):42–46CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26(20):2633–2634CrossRefPubMedGoogle Scholar
  45. 45.
    Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7(1):285CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Czar MJ, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD™. Nucleic Acids Res 37(suppl 2):W40–W47CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30(10):e43CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bode M, Khor S, Ye H, Li MH, Ying JY (2009) TmPrime: fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res 37:W214–W221CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lee PA, Dymond JS, Scheifele LZ, Richardson SM, Foelber KJ, Boeke JD, Bader JS (2010) CLONEQC: lightweight sequence verification for synthetic biology. Nucleic Acids Res 38:2617–2623CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Goler (2004) BioJADE: a design and simulation tool for synthetic biological systems. Master’s thesis, MIT, MIT Computer Science and Artificial Intelligence Laboratory, May 2004Google Scholar
  51. 51.
    Flouris M, Bilas A (2004) Clotho: transparent data versioning at the block I/O level. In MSST:315–328Google Scholar
  52. 52.
    Rodrigo G, Carrera J, Jaramillo A (2007) Asmparts: assembly of biological model parts. Syst Synth Biol 1(4):167–170CrossRefPubMedGoogle Scholar
  53. 53.
    Weeding E, Houle J, Kaznessis YN (2010) SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs. Brief Bioinform 11(4):394–402CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162CrossRefGoogle Scholar
  55. 55.
    Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738CrossRefPubMedGoogle Scholar
  56. 56.
    Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM (2011) SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks. Bioinformatics 27(3):433–434CrossRefPubMedGoogle Scholar
  57. 57.
    Le Fèvre F, Smidtas S, Combe C, Durot M, d’Alché-Buc F, Schachter V (2009) CycSim—an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25(15):1987–1988CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38(suppl 2):W144–W149CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P (2011) iPath2. 0: interactive pathway explorer. Nucleic Acids Res 39(suppl 2):W412–W415CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bates JT, Chivian D, Arkin AP (2011) GLAMM: genome-linked application for metabolic maps. Nucleic Acids Res 38:W400–W405CrossRefGoogle Scholar
  61. 61.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pósfai G, Plunkett G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, De Arruda M, Burland V (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046CrossRefPubMedGoogle Scholar
  63. 63.
    Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87PubMedPubMedCentralGoogle Scholar
  64. 64.
    Smolke CD, Carrier TA, Keasling JD (2000) Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl Environ Microbiol 66(12):5399–5405CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537CrossRefPubMedGoogle Scholar
  66. 66.
    Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267CrossRefPubMedGoogle Scholar
  67. 67.
    Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032CrossRefPubMedGoogle Scholar
  68. 68.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358CrossRefPubMedGoogle Scholar
  69. 69.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943CrossRefPubMedGoogle Scholar
  70. 70.
    Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277CrossRefPubMedGoogle Scholar
  71. 71.
    Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chem Biol 4(4):261–267CrossRefPubMedGoogle Scholar
  72. 72.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Müller U, Van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans A, Townsend CA, Sonke T, Bovenberg R, Wubbolts M (2006) Metabolic engineering of the E. colil-phenylalanine pathway for the production of d-phenylglycine (d-Phg). Metab Eng 8(3):196–208CrossRefPubMedGoogle Scholar
  74. 74.
    Karlsson M, Weber W (2012) Therapeutic synthetic gene networks. Curr Opin Biotechnol. doi: 10.1016/j.copbio.2012.1001.1003 PubMedGoogle Scholar
  75. 75.
    Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252CrossRefPubMedGoogle Scholar
  76. 76.
    Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35Google Scholar
  77. 77.
    Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568CrossRefPubMedGoogle Scholar
  78. 78.
    Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multiinput RNAi-based logic circuit for identification of specific cancer cells. Science 333:1307–1311CrossRefPubMedGoogle Scholar
  79. 79.
    Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 28:355–360CrossRefPubMedGoogle Scholar
  80. 80.
    Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89CrossRefPubMedGoogle Scholar
  82. 82.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562CrossRefPubMedGoogle Scholar
  83. 83.
    Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131(18):6508–6515CrossRefPubMedGoogle Scholar
  84. 84.
    Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 1:7(1)Google Scholar
  85. 85.
    Prather KL, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19(5):468–474CrossRefPubMedGoogle Scholar
  86. 86.
    Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.National Centre for Cell SciencePuneIndia
  2. 2.Computational and Systems Biology LabNational Centre for Cell SciencePuneIndia

Personalised recommendations