Melatonin and Other Neuroprotective Agents Target Molecular Mechanisms of Disease in Amyotrophic Lateral Sclerosis

  • Anastasios Fotinos
  • Yongjin Zhu
  • Lilly L. J. Mao
  • Nazem Atassi
  • Edward W. Zhou
  • Sarfraz Ahmad
  • Yingjun Guan
  • James D. Berry
  • Merit E. Cudkowicz
  • Xin Wang


Amyotrophic lateral sclerosis (ALS) is a debilitating disease characterized by progressive loss of voluntary motor neurons leading to muscle atrophy, weakness, weight loss, and respiratory failure. Evidence suggests that various molecular mechanisms including oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity, proteasomal dysfunction, and inflammation are responsible for ALS pathogenesis. In this chapter we summarize the various therapies tested on animal models targeting the above molecular mechanisms and compare their effects on body weight loss, muscle damage, disease onset, duration, and survival. We also review drugs that prevent body weight loss in animal models of ALS and analyze their structure-activity relationship.


Amyotrophic Lateral Sclerosis Motor Neuron Amyotrophic Lateral Sclerosis Patient G93A Mouse Body Weight Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank Drs. Rachna S. Pandya and Wei (David) Li for review discussion. This work is supported by grants from the MDA (to X. W.), the ALS Therapy Alliance (to X. W.), the Brigham and Women’s Hospital Biomedical Research Institute Fund to Sustain Research Excellence (to X. W.), the Bill & Melinda Gates Foundation (to X. W.), and the National Natural Science Foundation of China (81271413 to Y. G.).


  1. 1.
    Rosen DR, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Wood H. Amyotrophic lateral sclerosis: a hexanucleotide repeat expansion in C9ORF72 links amyotrophic lateral sclerosis and frontotemporal dementia. Nat Rev Neurol. 2011;7(11):595.CrossRefPubMedGoogle Scholar
  3. 3.
    Tanner CM, Goldman SM, Ross GW, Grate S. The disease intersection of susceptibility and exposure: Chemical exposures and degenerative disease risk. Alzheimers Dement. 2014;10(3):S213–25.Google Scholar
  4. 4.
    Miller RG, et al. Clinical trials of riluzole in patients with ALS. Neurology. 1996;47(4 Suppl 2):S86–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Eisen A, et al. Duration of amyotrophic lateral sclerosis is age dependent. Muscle Nerve. 1993;16(1):27–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Loureiro MPS, et al. Clinical aspects of amyotrophic lateral sclerosis in Rio de Janeiro/Brazil. J Neurol Sci. 2012;316(1):61–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Potemkowski A, Honczarenko K, Fabian A. Clinical course and epidemiological analysis of amyotrophic lateral sclerosis in Szczecin in 1986–1995. Neurol Neurochir Pol. 1999;33(1):71–8.PubMedGoogle Scholar
  8. 8.
    Logroscino G, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81(4):385–09.CrossRefPubMedGoogle Scholar
  9. 9.
    Weijs PJM. Hypermetabolism, is it real? The example of amyotrophic lateral sclerosis. J Am Diet Assoc. 2011;111(11):1670–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Genton L, et al. Nutritional state, energy intakes and energy expenditure of amyotrophic lateral sclerosis (ALS) patients. Clin Nutr. 2011;30(5):553–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Dupuis L, et al. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10(1):75–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Silva LB, et al. Amyotrophic lateral sclerosis: combined nutritional, respiratory and functional assessment. Arq Neuropsiquiatr. 2008;66(2B):354–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Jawaid A, et al. A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph Lateral Scler. 2010;11(6):542–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Paganoni S, et al. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve. 2011;44(1):20–4.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuhle J, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–4.CrossRefPubMedGoogle Scholar
  16. 16.
    McCombe AP, Henderson RD. The role of immune and inflammatory mechanisms in ALS. Curr Mol Med. 2011;11(3):246–54.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Glass CK, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aziz NA, et al. Weight loss in neurodegenerative disorders. J Neurol. 2008;255(12):1872–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Lennie TA. Relationship of body energy status to inflammation-induced anorexia and weight loss. Physiol Behav. 1998;64(4):475–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Clement K, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657–69.CrossRefPubMedGoogle Scholar
  21. 21.
    Forsythe LK, Wallace J, Livingstone M. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21(2):117–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee CD, et al. Muscle ultrasound quantifies the rate of reduction of muscle thickness in amyotrophic lateral sclerosis. Muscle Nerve. 2010;42(5):814–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Dalbello-Haas V, Florence JM, Krivickas LS. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev. 2008;2:CD005229.Google Scholar
  24. 24.
    Pandya RS, et al. Neuroprotection for amyotrophic lateral sclerosis: role of stem cells, growth factors, and gene therapy. Cent Nerv Syst Agents Med Chem. 2012;12(1):15–27.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gurney ME, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Deng HX, et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science. 1993;261(5124):1047–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Martin N, et al. A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet. 2002;32(3):443–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Ludolph AC, et al. Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph Lateral Scler. 2010;11(1–2):38–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Bederson JB, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;217(4562):855–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Suzuki M, et al. Sexual dimorphism in disease onset and progression of a rat model of ALS. Amyotroph Lateral Scler. 2007;8(1):20–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Weydt P, et al. Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport. 2003;14(7):1051–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Combs DJ, D’Alecy LG. Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1,3-butanediol. Stroke. 1987;18(2):503–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Willing AE, et al. hNT neurons delay onset of motor deficits in a model of amyotrophic lateral sclerosis. Brain Res Bull. 2001;56(6):525–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Garbuzova-Davis S, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12(3):255–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Morita E, et al. A novel cell transplantation protocol and its application to an ALS mouse model. Exp Neurol. 2008;213(2):431–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Ferrante RJ, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15(4):345–57.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang X, et al. The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci. 2011;31(41):14496–507.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang X, et al. Inhibitors of cytochrome c release with therapeutic potential for Huntington’s disease. J Neurosci. 2008;28(38):9473–85.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang X, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009;40(5):1877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang Y, et al. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2013;55:26–35.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rival T, et al. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the drosophila brain. Curr Biol. 2004;14(7):599–605.CrossRefPubMedGoogle Scholar
  45. 45.
    Weishaupt JH, et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res. 2006;41(4):313–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Dardiotis E, et al. Intraperitoneal melatonin is not neuroprotective in the G93ASOD1 transgenic mouse model of familial ALS and may exacerbate neurodegeneration. Neurosci Lett. 2013;548:170–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Rogério F, et al. Superoxide dismutase isoforms 1 and 2 in lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin treatment. Dev Brain Res. 2005;154(2):217–25.CrossRefGoogle Scholar
  48. 48.
    Das A, et al. The inhibition of apoptosis by melatonin in VSC4. 1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF‐α toxicity involves membrane melatonin receptors. J Pineal Res. 2010;48(2):157–69.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jacob S, et al. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res. 2002;33(3):186–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Gurney ME, et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39(2):147–57.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang H, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol. 2011;173(6):595–602.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Petri S, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006;98(4):1141–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Wu AS, et al. Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J Neurochem. 2003;85(1):142–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Petri S, et al. The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem. 2007;102(3):991–1000.CrossRefPubMedGoogle Scholar
  55. 55.
    Durham HD, Dahrouge S, Cashman NR. Evaluation of the spinal cord neuron X neuroblastoma hybrid cell line NSC-34 as a model for neurotoxicity testing. Neurotoxicology. 1993;14(4):387–95.PubMedGoogle Scholar
  56. 56.
    Kupershmidt L, et al. Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 2009;23(11):3766–79.CrossRefPubMedGoogle Scholar
  57. 57.
    Kupershmidt L, et al. Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience. 2011;189:345–58.CrossRefPubMedGoogle Scholar
  58. 58.
    Henderson JT, et al. Reduction of lower motor neuron degeneration in wobbler mice by N-acetyl-L-cysteine. J Neurosci. 1996;16(23):7574–82.PubMedGoogle Scholar
  59. 59.
    Andreassen OA, et al. N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport. 2000;11(11):2491–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Vyth A, et al. Survival in patients with amyotrophic lateral sclerosis, treated with an array of antioxidants. J Neurol Sci. 1996;139(Suppl):99–103.CrossRefPubMedGoogle Scholar
  61. 61.
    Jung C, et al. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett. 2001;304(3):157–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Crow JP, et al. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol. 2005;58(2):258–65.CrossRefPubMedGoogle Scholar
  63. 63.
    Petri S, et al. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2006;22(1):40–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Khiat A, et al. MRS study of the effects of minocycline on markers of neuronal and microglial integrity in ALS. Magn Reson Imaging. 2010;28(10):1456–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(Pt 2):233–49.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Leung AW, Varanyuwatana P, Halestrap AP. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem. 2008;283(39):26312–23.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Vieira HL, et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene. 2001;20(32):4305–16.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang H, et al. Nortriptyline delays disease onset in models of chronic neurodegeneration. Eur J Neurosci. 2007;26(3):633–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Karlsson J, et al. Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis. J Neurosurg. 2004;101(1):128–37.CrossRefPubMedGoogle Scholar
  70. 70.
    Keep M, et al. Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. 2001;894(2):327–31.CrossRefPubMedGoogle Scholar
  71. 71.
    Gribkoff VK, Bozik ME. KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2, 6-benzothiazole-diamine dihydrochloride monohydrate] for the treatment of amyotrophic lateral sclerosis. CNS Neurosci Ther. 2008;14(3):215–26.CrossRefPubMedGoogle Scholar
  72. 72.
    Danzeisen R, et al. Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-Lpropylamino-benzathiazole dihydrochloride]. J Pharmacol Exp Ther. 2006;316(1):189–99.CrossRefPubMedGoogle Scholar
  73. 73.
    Bozik ME, et al. Safety, tolerability, and pharmacokinetics of KNS-760704 (dexpramipexole) in healthy adult subjects. J Clin Pharmacol. 2011;51(8):1177–85.CrossRefPubMedGoogle Scholar
  74. 74.
    Bordet T, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007;322(2):709–20.CrossRefPubMedGoogle Scholar
  75. 75.
    Martin LJ. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs. 2010;13(8):568–80.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Rovini A, et al. Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol. 2010;80(6):884–94.CrossRefPubMedGoogle Scholar
  77. 77.
    Andreassen OA, et al. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem. 2001;77(2):383–90.CrossRefPubMedGoogle Scholar
  78. 78.
    Choi JK, et al. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci. 2009;30(11):2143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Klivenyi P, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Snow RJ, et al. Creatine supplementation and riluzole treatment provide similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience. 2003;119(3):661–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Rosenfeld J, et al. Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler. 2008;9(5):266–72.CrossRefPubMedGoogle Scholar
  82. 82.
    Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10(3):268–78.CrossRefPubMedGoogle Scholar
  83. 83.
    Martin LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol. 1999;58(5):459–71.CrossRefPubMedGoogle Scholar
  84. 84.
    Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120–30.CrossRefPubMedGoogle Scholar
  85. 85.
    Kostic V, et al. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science. 1997;277(5325):559–63.CrossRefPubMedGoogle Scholar
  86. 86.
    Zhu S, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(6884):74–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Van Den Bosch L, et al. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport. 2002;13(8):1067–70.CrossRefGoogle Scholar
  88. 88.
    Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol. 2003;53(2):267–70.Google Scholar
  89. 89.
    Gordon PH, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6(12):1045–53.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang X, et al. Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J Biol Chem. 2001;276(36):33812–20.CrossRefPubMedGoogle Scholar
  91. 91.
    Turner BJ, et al. Opposing effects of low and high-dose clozapine on survival of transgenic amyotrophic lateral sclerosis mice. J Neurosci Res. 2003;74(4):605–13.CrossRefPubMedGoogle Scholar
  92. 92.
    Yi H, et al. N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm. 2006;113(1):21–32.CrossRefPubMedGoogle Scholar
  93. 93.
    Waibel S, et al. Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurol. 2004;251(9):1080–4.Google Scholar
  94. 94.
    Li M, et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science. 2000;288(5464):335–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Sagot Y, et al. An orally active anti-apoptotic molecule (CGP 3466B) preserves mitochondria and enhances survival in an animal model of motoneuron disease. Br J Pharmacol. 2000;131(4):721–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Groeneveld GJ, et al. CGP 3466B has no effect on disease course of (G93A) mSOD1 transgenic mice. Amyotroph Lateral Scler. 2004;5(4):220–5.Google Scholar
  97. 97.
    Olanow CW, et al. TCH346 as a neuroprotective drug in Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2006;5(12):1013–20.CrossRefPubMedGoogle Scholar
  98. 98.
    Rothstein JD. Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci. 1995;3(6):348–59.PubMedGoogle Scholar
  99. 99.
    Bruijn LI, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997;18(2):327–38.CrossRefPubMedGoogle Scholar
  100. 100.
    Trotti D, et al. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci. 1999;2(9):427–33.CrossRefPubMedGoogle Scholar
  101. 101.
    Rothstein JD. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv Neurol. 1995;68:7–20.PubMedGoogle Scholar
  102. 102.
    Miller RG, et al. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2007;1:CD001447.Google Scholar
  103. 103.
    Scott S, et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler. 2008;9(1):4–15.Google Scholar
  104. 104.
    Joo IS, et al. Oral administration of memantine prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Clin Neurol. 2007;3(4):181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang R, Zhang D. Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. Eur J Neurosci. 2005;22(9):2376–80.Google Scholar
  106. 106.
    Lv L, et al. Therapeutic application of histone deacetylase inhibitors for stroke. Cent Nerv Syst Agents Med Chem. 2011;11(2):138–49.Google Scholar
  107. 107.
    Monti B, et al. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res. 2010;17(2):130–41.CrossRefPubMedGoogle Scholar
  108. 108.
    Sugai F, et al. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci. 2004;20(11):3179–83.CrossRefPubMedGoogle Scholar
  109. 109.
    Feng HL, et al. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience. 2008;155(3):567–72.Google Scholar
  110. 110.
    Del Signore SJ, et al. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. Amyotroph Lateral Scler. 2009;10(2):85–94.CrossRefPubMedGoogle Scholar
  111. 111.
    Rouaux C, et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci. 2007;27(21):5535–45.CrossRefPubMedGoogle Scholar
  112. 112.
    Crochemore C, et al. Long-term dietary administration of valproic acid does not affect, while retinoic acid decreases, the lifespan of G93A mice, a model for amyotrophic lateral sclerosis. Muscle Nerve. 2009;39(4):548–52.CrossRefPubMedGoogle Scholar
  113. 113.
    Yoo YE, Ko CP. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2011;231(1):147–59.CrossRefPubMedGoogle Scholar
  114. 114.
    Maragakis NJ, et al. Topiramate protects against motor neuron degeneration in organotypic spinal cord cultures but not in G93A SOD1 transgenic mice. Neurosci Lett. 2003;338(2):107–10.CrossRefPubMedGoogle Scholar
  115. 115.
    Paizs M, et al. Talampanel reduces the level of motoneuronal calcium in transgenic mutant SOD1 mice only if applied presymptomatically. Amyotroph Lateral Scler. 2011;12(5):340–4.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Rothstein JD, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.CrossRefPubMedGoogle Scholar
  117. 117.
    Guo H, et al. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet. 2003;12(19):2519–32.CrossRefPubMedGoogle Scholar
  118. 118.
    Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16(9):833–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Kalmar B, Lu C-H, Greensmith L. The role of heat shock proteins in amyotrophic lateral sclerosis: the therapeutic potential of arimoclomol. Pharmacol Ther. 2014;141(1):40–54.CrossRefPubMedGoogle Scholar
  120. 120.
    Kakkar V, et al. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech. 2014;7(4):421–34.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. Biochim Biophys Acta (BBA)-Mol Cell Res. 2014;1843(1):182–96.CrossRefGoogle Scholar
  122. 122.
    Wang J, et al. Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci. 2009;106(5):1392–7.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kieran D, et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med. 2004;10(4):402–5.CrossRefPubMedGoogle Scholar
  124. 124.
    Wen J, et al. Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol Pharm Bull. 2006;29(4):713–8.CrossRefPubMedGoogle Scholar
  125. 125.
    Song Y, et al. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria. J Zhejiang Univ Sci B. 2006;7(9):749–56.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yamashita T, et al. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo. Platelets. 2006;17(3):201–6.CrossRefPubMedGoogle Scholar
  127. 127.
    Qi X, et al. Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction. J Pharmacol Exp Ther. 2004;311(1):388–93.CrossRefPubMedGoogle Scholar
  128. 128.
    Green AR, Ashwood T. Free radical trapping as a therapeutic approach to neuroprotection in stroke: experimental and clinical studies with NXY-059 and free radical scavengers. Curr Drug Targets CNS Neurol Disord. 2005;4(2):109–18.CrossRefPubMedGoogle Scholar
  129. 129.
    Onimaru S, et al. Inhibitory effects of edaravone on the production of tumor necrosis factor-alpha in the isolated heart undergoing ischemia and reperfusion. Heart Vessels. 2006;21(2):108–15.Google Scholar
  130. 130.
    Ito H, et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol. 2008;213(2):448–55.Google Scholar
  131. 131.
    Chen RW, et al. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem. 2003;84(3):566–75.Google Scholar
  132. 132.
    Caldero J, et al. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience. 2010;165(4):1353–69.Google Scholar
  133. 133.
    Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59.CrossRefPubMedGoogle Scholar
  134. 134.
    Wang S, et al. Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol Lett. 2013;35(8):1199–207.CrossRefPubMedGoogle Scholar
  135. 135.
    Chen Y, et al. Activation of the Wnt/beta-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem Biophys Res Commun. 2012;420(2):397–403.CrossRefPubMedGoogle Scholar
  136. 136.
    Chen Y, et al. Wnt signaling pathway are involved in pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res. 2012;34(4):390–9.CrossRefPubMedGoogle Scholar
  137. 137.
    Howland DS, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A. 2002;99(3):1604–9.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Schiffer D, et al. Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci. 1996;139:27–33.CrossRefPubMedGoogle Scholar
  139. 139.
    Okamoto Y, et al. An autopsy case of SOD1-related ALS with TDP-43 positive inclusions. Neurology. 2011;77(22):1993–5.CrossRefPubMedGoogle Scholar
  140. 140.
    McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26(4):459–70.CrossRefPubMedGoogle Scholar
  141. 141.
    Sekizawa T, et al. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci. 1998;154(2):194–9.CrossRefPubMedGoogle Scholar
  142. 142.
    Meissner F, Molawi K, Zychlinsky A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A. 2010;107(29):13046–50.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Kiaei M, et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2006;26(9):2467–73.CrossRefPubMedGoogle Scholar
  144. 144.
    Trott A, et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell. 2008;19(3):1104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Kiaei M, et al. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2(5):246–54.CrossRefPubMedGoogle Scholar
  146. 146.
    Maresz K, et al. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem. 2005;95(2):437–45.CrossRefPubMedGoogle Scholar
  147. 147.
    Ehrhart J, et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation. 2005;2:29.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Shoemaker JL, et al. The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem. 2007;101(1):87–98.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Kim K, et al. AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol. 2006;542(1–3):100–5.CrossRefPubMedGoogle Scholar
  150. 150.
    Bilsland LG, et al. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J. 2006;20(7):1003–5.CrossRefPubMedGoogle Scholar
  151. 151.
    Weydt P, et al. Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotroph Lateral Scler. 2005;6(3):182–4.CrossRefGoogle Scholar
  152. 152.
    Neymotin A, et al. Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2009;220(1):191–7.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Breidert T, et al. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem. 2002;82(3):615–24.CrossRefPubMedGoogle Scholar
  154. 154.
    Schütz B, et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci. 2005;25(34):7805–12.Google Scholar
  155. 155.
    Cacabelos R. Pharmacogenomics and therapeutic prospects in Alzheimer’s disease. Expert Opin Pharmacother. 2005;6(12):1967–87.Google Scholar
  156. 156.
    Van der Schyf CJ, Geldenhuys WJ, Youdim MB. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem. 2006;99(4):1033–48.CrossRefPubMedGoogle Scholar
  157. 157.
    Youdim MB. Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and m30 derived from rasagiline. Exp Neurobiol. 2013;22(1):1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Berk M, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64(6):468–75.CrossRefPubMedGoogle Scholar
  159. 159.
    Berk M, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia – a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–8.CrossRefPubMedGoogle Scholar
  160. 160.
    Grant JE, Odlaug BL, Kim SW. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry. 2009;66(7):756–63.CrossRefPubMedGoogle Scholar
  161. 161.
    Kano O, et al. Beneficial effect of pramipexole for motor function and depression in Parkinson’s disease. Neuropsychiatr Dis Treat. 2008;4(4):707.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Fujiwara S, et al. Anhedonia in Japanese patients with Parkinson’s disease. Geriatr Gerontol Int. 2011;11(3):275–81.CrossRefPubMedGoogle Scholar
  163. 163.
    Oguro H, et al. Efficacy of pramipexole for treatment of apathy in Parkinson’s disease. Int J Clin Med. 2014;5(15):885.CrossRefGoogle Scholar
  164. 164.
    Clemens L, et al. Olesoxime improves specific features of the HD pathology. J Neurol Neurosurg Psychiatry. 2012;83 Suppl 1:A53–4.CrossRefGoogle Scholar
  165. 165.
    Roitman S, et al. Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord. 2007;9(7):754–8.CrossRefPubMedGoogle Scholar
  166. 166.
    Watanabe A, Kato N, Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res. 2002;42(4):279–85.CrossRefPubMedGoogle Scholar
  167. 167.
    Verbessem P, et al. Creatine supplementation in Huntington’s disease a placebo-controlled pilot trial. Neurology. 2003;61(7):925–30.CrossRefPubMedGoogle Scholar
  168. 168.
    Miyaoka T, et al. Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):304–7.CrossRefPubMedGoogle Scholar
  169. 169.
    Miyaoka T, et al. Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol. 2008;31(5):287–92.CrossRefPubMedGoogle Scholar
  170. 170.
    Levkovitz Y, et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry. 2010;71(2):138.CrossRefPubMedGoogle Scholar
  171. 171.
    Kumra S, et al. Childhood-onset schizophrenia: a double-blind clozapine-haloperidol comparison. Arch Gen Psychiatry. 1996;53(12):1090–7.CrossRefPubMedGoogle Scholar
  172. 172.
    Frazier JA, et al. An open trial of clozapine in 11 adolescents with childhood-onset schizophrenia. J Am Acad Child Adolesc Psychiatry. 1994;33(5):658–63.CrossRefPubMedGoogle Scholar
  173. 173.
    Hanagasi HA, et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: a randomized, double‐blind, placebo‐controlled, multicenter study. Mov Disord. 2011;26(10):1851–8.CrossRefPubMedGoogle Scholar
  174. 174.
    Group PS. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59(12):1937.CrossRefGoogle Scholar
  175. 175.
    Tariot PN, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.CrossRefPubMedGoogle Scholar
  176. 176.
    Muhonen LH, et al. Double-blind, randomized comparison of memantine and escitalopram for the treatment of major depressive disorder comorbid with alcohol dependence. J Clin Psychiatry. 2008;69(3):392–9.CrossRefPubMedGoogle Scholar
  177. 177.
    Aboujaoude E, Barry JJ, Gamel N. Memantine augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. J Clin Psychopharmacol. 2009;29(1):51–5.CrossRefPubMedGoogle Scholar
  178. 178.
    Orgogozo J-M, et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834–9.CrossRefPubMedGoogle Scholar
  179. 179.
    Aarsland D, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8.CrossRefPubMedGoogle Scholar
  180. 180.
    Kastner T, Finesmith R, Walsh K. Long-term administration of valproic acid in the treatment of affective symptoms in people with mental retardation. J Clin Psychopharmacol. 1993;13(6):448–51.CrossRefPubMedGoogle Scholar
  181. 181.
    Kinrys G, et al. Valproic acid for the treatment of social anxiety disorder. Int Clin Psychopharmacol. 2003;18(3):169–72.PubMedGoogle Scholar
  182. 182.
    Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8(1):57–64.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Rudenko A, Tsai L-H. Epigenetic regulation in memory and cognitive disorders. Neuroscience. 2014;264:51–63.CrossRefPubMedGoogle Scholar
  184. 184.
    McIntyre RS, et al. Topiramate versus Bupropion SR when added to mood stabilizer therapy for the depressive phase of bipolar disorder: a preliminary single‐blind study. Bipolar Disord. 2002;4(3):207–13.CrossRefPubMedGoogle Scholar
  185. 185.
    Claudino AM, et al. Double-blind, randomized, placebo-controlled trial of topiramate plus cognitive-behavior therapy in binge-eating disorder. J Clin Psychiatry. 2007;68(9):1324–32.CrossRefPubMedGoogle Scholar
  186. 186.
    Aujla PK, Fetell MR, Jensen FE. Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model. Epilepsia. 2009;50(4):694–701.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Bowers MS, Chen BT, Bonci A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron. 2010;67(1):11–24.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Finsterer J. Psychosis as a manifestation of cerebral involvement in mitochondrial disorders. In: Recent advances in clinical medicine. Proceedings of the International Conferences on Medical Pharmacology/Medical Histology and Embryology/Psychiatry and Psychotherapy/International Conference on Oncology. 2010.Google Scholar
  189. 189.
    Claude Desport PMP, Truong CT, Courat L, Vallat JM, Couratier PJ. Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler. 2000;1(2):91–6.Google Scholar
  190. 190.
    Vera G, et al. WIN 55,212-2 prevents mechanical allodynia but not alterations in feeding behaviour induced by chronic cisplatin in the rat. Life Sci. 2007;81(6):468–79.CrossRefPubMedGoogle Scholar
  191. 191.
    Pagano C, et al. The endogenous cannabinoid system stimulates glucose uptake in human fat cells via phosphatidylinositol 3-kinase and calcium-dependent mechanisms. J Clin Endocrinol Metab. 2007;92(12):4810–9.CrossRefPubMedGoogle Scholar
  192. 192.
    Stommel EW, et al. Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial. Amyotroph Lateral Scler. 2009;10(5–6):393–404.CrossRefPubMedGoogle Scholar
  193. 193.
    Lenglet T, et al. A phase II–III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol. 2014;21(3):529–36.CrossRefPubMedGoogle Scholar
  194. 194.
    Dupuis L, et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One. 2012;7(6):e37885.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Pandya RS, et al. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci. 2013;70(24):4729–45.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Liang H, et al. PGC-1α protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model. Muscle Nerve. 2011;44(6):947–56.CrossRefPubMedGoogle Scholar
  197. 197.
    Da Cruz S, et al. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab. 2012;15(5):778–86.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Holzbaur EL, et al. Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiol Dis. 2006;23(3):697–707.CrossRefPubMedGoogle Scholar
  199. 199.
    Morrison BM, et al. A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2009;217(2):258–68.CrossRefPubMedGoogle Scholar
  200. 200.
    Zhu Y, et al. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today. 2014.Google Scholar
  201. 201.
    Jan JE, O’Donnell ME. Use of melatonin in the treatment of paediatric sleep disorders. J Pineal Res. 1996;21(4):193–9.CrossRefPubMedGoogle Scholar
  202. 202.
    Dolberg OT, Hirschmann S, Grunhaus L. Melatonin for the treatment of sleep disturbances in major depressive disorder. Am J Psychiatry. 1998;155(8):1119–21.CrossRefPubMedGoogle Scholar
  203. 203.
    Uher R, Mors O, McGuffin P. Antidepressant effects of nortriptyline and escitalopram in the GENDEP study: is one better than the other? Acta Psychiatr Scand. 2013;127(4):330.CrossRefPubMedGoogle Scholar
  204. 204.
    Buysse DJ, et al. Longitudinal effects of nortriptyline on EEG sleep and the likelihood of recurrence in elderly depressed patients. Neuropsychopharmacology. 1996;14(4):243–52.CrossRefPubMedGoogle Scholar
  205. 205.
    Andrews J. Amyotrophic lateral sclerosis: clinical management and research update. Curr Neurol Neurosci Rep. 2009;9(1):59–68.CrossRefPubMedGoogle Scholar
  206. 206.
    Coric V, et al. Riluzole augmentation in treatment-resistant obsessive–compulsive disorder: an open-label trial. Biol Psychiatry. 2005;58(5):424–8.CrossRefPubMedGoogle Scholar
  207. 207.
    Zarate Jr CA, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry. 2005;57(4):430–2.CrossRefPubMedGoogle Scholar
  208. 208.
    Grant P, et al. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2007;17(6):761–7.Google Scholar
  209. 209.
    Goodman WK, et al. Obsessive-compulsive disorder. Psychiatr Clin N Am. 2014;37(3): 257–67.Google Scholar
  210. 210.
    Ryu H, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93(5):1087–98.Google Scholar
  211. 211.
    Sedel F, et al. Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults. J Inherit Metab Dis. 2007;30(5):631–41.CrossRefPubMedGoogle Scholar
  212. 212.
    Bachmann C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr. 2003;162(6):410–6.PubMedGoogle Scholar
  213. 213.
    Krupp L, et al. Study and treatment of post Lyme disease (STOP-LD) A randomized double masked clinical trial. Neurology. 2003;60(12):1923–30.CrossRefPubMedGoogle Scholar
  214. 214.
    Mineur YS, Picciotto MR, Sanacora G. Antidepressant-like effects of ceftriaxone in male C57BL/6J mice. Biol Psychiatry. 2007;61(2):250–2.CrossRefPubMedGoogle Scholar
  215. 215.
    Guler E, Leyhe T. A late form of neurosyphilis manifesting with psychotic symptoms in old age and good response to ceftriaxone therapy. Int Psychogeriatr. 2011;23(4):666–9.CrossRefPubMedGoogle Scholar
  216. 216.
    Kalmar B, et al. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem. 2008;107(2):339–50.CrossRefPubMedGoogle Scholar
  217. 217.
    Shin JH, et al. Concurrent administration of Neu 2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis. Mol Pharmacol. 2007;71(4):965.CrossRefPubMedGoogle Scholar
  218. 218.
    Fornai F, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci. 2008;105(6):2052.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Macritchie K, et al. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev. 2001;3:CD003196.Google Scholar
  220. 220.
    Goodwin GM, et al. A pooled analysis of 2 placebo-controlled 18-month trials of lamotrigine and lithium maintenance in bipolar I disorder. J Clin Psychiatry. 2004;65(3):432–41.CrossRefPubMedGoogle Scholar
  221. 221.
    Siegel M, et al. Preliminary investigation of lithium for mood disorder symptoms in children and adolescents with autism spectrum disorder. J Child Adolesc Psychopharmacol. 2014;24(7):399–402.Google Scholar
  222. 222.
    Geddes JR, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375(9712):385–95.CrossRefPubMedGoogle Scholar
  223. 223.
    Allison AC, et al. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(7):1341–57.CrossRefPubMedGoogle Scholar
  224. 224.
    Gamaleddin I, et al. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PLoS One. 2012;7(1):e29900.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Pamplona FA, et al. The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl). 2006;188(4):641–9.CrossRefGoogle Scholar
  226. 226.
    Haller J, et al. CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol. 2004;15(4):299–304.CrossRefPubMedGoogle Scholar
  227. 227.
    Imai K, et al. Psychological and mental health problems in patients with thalidomide embryopathy in Japan. Psychiatry Clin Neurosci. 2014;68(6):479–86.CrossRefPubMedGoogle Scholar
  228. 228.
    Anagnostou E, et al. Autism spectrum disorder: advances in evidence-based practice. Can Med Assoc J. 2014;186(7):509–19.Google Scholar
  229. 229.
    Chez M, et al. Safety and observations in a pilot study of lenalidomide for treatment in autism. Autism Res Treat. 2012;2012:291601.PubMedPubMedCentralGoogle Scholar
  230. 230.
    West M, et al. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem. 2004;91(1):133–43.Google Scholar
  231. 231.
    Kiaei M, et al. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2005;191(2):331–6.Google Scholar
  232. 232.
    Kemp DE, et al. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord. 2012;136(3):1164–73.CrossRefPubMedGoogle Scholar
  233. 233.
    Edlinger M, et al. Treatment of antipsychotic-associated hyperglycemia with pioglitazone: a case series. J Clin Psychopharmacol. 2007;27(4):403–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Anastasios Fotinos
    • 1
  • Yongjin Zhu
    • 1
  • Lilly L. J. Mao
    • 2
  • Nazem Atassi
    • 3
  • Edward W. Zhou
    • 1
  • Sarfraz Ahmad
    • 2
  • Yingjun Guan
    • 4
  • James D. Berry
    • 3
  • Merit E. Cudkowicz
    • 3
  • Xin Wang
    • 1
  1. 1.Department of NeurosurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Aimcan Pharma Research and Technologies Inc.GuelphCanada
  3. 3.Neurological Clinical Research InstituteMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Department of Histology and EmbryologyWeifang Medical UniversityWeifang, ShandongChina

Personalised recommendations