Melatonin and Melatonin Receptors in Neuroprotection

  • Omur Gulsum Deniz
  • Aysın Pınar Turkmen
  • Mehmet Emin Onger
  • Berrin Zuhal Altunkaynak
  • Suleyman Kaplan


Melatonin (Mel) is a neurohormone which is synthesized from tryptophan with the activation of beta-adrenergic receptors of the pineal gland [2, 11, 36]. It is chemically known as N-acetyl-5-methoxytryptamine [1]. The main task of this hormone is adjusting the rhythm of the body and protecting the biological clock of the body. Also, it has a role in many biological and physiological processes in the body [11, 34, 58]. At this point, apart from the protection of the tissues by preventing the lipid peroxidation [8, 33], Mel is directly a free radical scavenger, and it is stronger than all known antioxidants by this effect [1, 55] as having a neuroprotective effect mechanism [2, 69]. Also, Mel shows tissue protective effect by increasing antioxidant enzyme levels or inhibiting pro-oxidative enzymes through receptors [49]. With this perspective, this chapter of the book reviews the therapeutic effects of Mel and Mel receptors in neuroprotection.


Nitric Oxide Pineal Gland Melatonin Receptor Antioxidant Enzyme Level Optic Nerve Transection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anusha R, Rakesh A, Bhavani M, Phanindra B, Deepika D, Mahesh R. Melatonin, biosynthesis and its various effects. J Pharm. 2013;1:05–9.Google Scholar
  2. 2.
    Aygun D, Kaplan S, Odaci E, Onger ME, Altunkaynak ME. Toxicity of non-steroidal anti-inflammatory drugs: a review of melatonin and diclofenac sodium association. Histol Histopathol. 2012;27:417–36.PubMedGoogle Scholar
  3. 3.
    Beyer CE, Steketee JD, Saphier D. Antioxidant properties of melatonin-an emerging mystery. Biochem Pharmacol. 1998;56:1265–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336:186–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Cagnacci A. Melatonin in relation to physiology in adult humans. J Pineal Res. 1996;21:200–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Calvo J, Boya J. Ultrastructure of the pineal gland in the adult rat. J Anat. 1984;138:405–9.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Calvo J, Boya J, Borregon A, Garcia-Maurino JE. Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study. Anat Rec. 1988;220:424–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav. 2013;63:322–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Chan KH, Wong YH. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci. 2013;14:18385–406.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chang HM, Ling EA, Lue JH, Wen CY, Shieh JY. Melatonin attenuates neuronal NADPHd/NOS expression in the hypoglossal nucleus of adult rats following peripheral nerve injury. Brain Res. 2000;873:243–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9:11–24.CrossRefPubMedGoogle Scholar
  12. 12.
    Dubocovich ML, Masana MI, Iacob S, Sauri DM. Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol. 1997;355:365–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A. 1994;91:6133–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ek RO, Zencirci SG, Dost T, Birincioğlu M, Bilgin MD. Effects of melatonin supplementary on the sciatic nerve conduction velocity in the ovariectomized-aged rat. Neuro Endocrinol Lett. 2007;28:666–70.PubMedGoogle Scholar
  16. 16.
    Ekmekcioğlu C. Melatonin receptors in humans, biological role and clinical relevance. Biomed Pharmacoter. 2006;60:97–108.Google Scholar
  17. 17.
    Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell Mol Neurobiol. 1998;18:667–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Favero G, Rodella LF, Reiter RJ, Rezzani R. Melatonin and its atheroprotective effects: a review. Mol Cell Endocrinol. 2014;382:926–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Fujimoto T, Nakamura T, Ikeda T, Takagi K. Potent protective effects of melatonin on experimental spinal cord injury. Spine. 2000;25:769–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C. Melatonin is a scavenger of peroxynitrite. Life Sci. 1997;10:169–74.Google Scholar
  21. 21.
    Hadley ME. “Endocrinology.” Prentice-Hall, 3rd edition, Englewood Cliffs, New Jersey, USA, pp. 381–382.Google Scholar
  22. 22.
    Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Jahovic N, Cevik H, Sehirli AO, Yeğen BC, Sener G. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res. 2003;34:282–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaplan S, Pişkin A, Ayyıldız M, Aktaş A, Köksal B, Ülkay MB, Türkmen AP, Bakan F, Geuna S. The effect of melatonin and platelet gel on sciatic nerve repair: an electrophysiological and stereological study. Microsurgery. 2011;31:306–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Kaptanoğlu E, Tuncel M, Palaoğlu S, Konan A, Demirpençe E, Kilinç K. Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg. 2000;93:77–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Kilic E, Hermann DM, Isenmann S, Bahr M. Effects of pinealectomy and melatonin on the retrograde degeneration of retinal ganglion cells in a novel model of intraorbital optic nerve transection in mice. J Pineal Res. 2002;32:106–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Kovacic P, Somanathan R. Melatonin and circadian rhythm: aging, cancer, and mechanism. Open J Prev Med. 2014;4:545–60.CrossRefGoogle Scholar
  28. 28.
    Kus I, Sarsilmaz M, Ogeturk M, Yilmaz B, Kelestimur H, Oner H. Ultrastructural interrelationship between the pineal gland and the testis in the male rat. Arch Androl. 2000;45:119–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Kus I, Oner H, Ozogul C, Ayar A, Ozen OA, Sarsilmaz M, Kelestimur H. Effects of estradiol benzoate on the ultrastructure of the pinealocyte in the ovariectomized rat. Neuro Endocrinol Lett. 2002;23:405–10.PubMedGoogle Scholar
  30. 30.
    Kus I, Sarsilmaz M, Ozen OA, Turkoglu AO, Pekmez H, Songur A, Kelestimur H. Light and electron microscopic examination of pineal gland in rats exposed to constant light and constant darkness. Neuro Endocrinol Lett. 2004;25:102–8.PubMedGoogle Scholar
  31. 31.
    Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Amer Chem Soc. 1958;80:2587.Google Scholar
  32. 32.
    Li DY, Smith DG, Hardeland R, Yang MY, Xu HL, Zhang L, Yin HD, Zhu Q. Melatonin receptor genes in vertebrates. Int J Mol Sci. 2013;14:11208–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Longoni B, Salgo MG, Pryor WA, Marchiafava PL. Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci. 1998;62:853–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25:177–95.CrossRefPubMedGoogle Scholar
  35. 35.
    Naguib M, Gottumukkala V, Goldstein PA. Melatonin and anesthesia: a clinical perspective. J Pineal Res. 2007;42:12–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Odaci E, Kaplan S. Chapter 16: melatonin and nerve regeneration. Int Rev Neurobiol. 2009;87:317–35.CrossRefPubMedGoogle Scholar
  37. 37.
    Omura T, Sano M, Omura K, Hasegawa T, Nagano A. A mild acute compression induces neurapraxia in rat sciatic nerve. Int J Neurosci. 2004;114:1561–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Özcelik F, Erdem M, Bolu A, Gülsün M. Melatonin: general features and its role in psychiatric disorders. Curr App Psychiatry. 2013;5:179–203.Google Scholar
  39. 39.
    Pandi-Perumal SR, Srinivasan V, Cardinali DP, Monti JM. Could agomelatine be the ideal antideprassant? Expert Rev Neurother. 2006;6:1595–1608.Google Scholar
  40. 40.
    Penev PD, Zee PC. Melatonin: a clinical perspective. Ann Neurol. 1997;42:545–553.Google Scholar
  41. 41.
    Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 1994;55:271–5.CrossRefGoogle Scholar
  42. 42.
    Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endoc Rev. 1991;12:151–80.CrossRefGoogle Scholar
  43. 43.
    Reiter RJ. Neuroendocrine effects of light. Int J Biometeorol. 1991;35:169–75.CrossRefPubMedGoogle Scholar
  44. 44.
    Reiter RJ. Interactions of the pineal hormone melatonin with oxygen-centered free radicals: a brief review. Brazilian J Med Biol Res. 1993;26:1141–55.Google Scholar
  45. 45.
    Reiter RJ, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60:2255–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol. 1998;56:359–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7:444–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Reiter RJ. Melatonin: clinical relevance. Best Pract Res Clin Endocrinol Metab. 2003;17:273–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58:10–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol. 2009;44:175–200.CrossRefPubMedGoogle Scholar
  51. 51.
    Reiter RJ, Tan DX, Erren TC, Fuentes-Broto L, Paredes SD. Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis. Integr Cancer Ther. 2009;8:354–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Reppert SM, Weaver DR, Ebisawa T. Cloning and characterazation of a melatonin receptor that mediates reproductive and circadian responses. Neuron 1994;13:1177–1185.Google Scholar
  53. 53.
    Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Reppert SM, Weaver DR, Godson C. Melatonin receptors step in to the light: cloning and classification of subtypes. Trends Pharmacol Sci. 1996;17:100–2.CrossRefPubMedGoogle Scholar
  55. 55.
    Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ. Beneficial effects of melatonin in protecting against cyclosporine A-induced cardiotoxicity are receptor mediated. J Pineal Res. 2006;41:288–95.CrossRefPubMedGoogle Scholar
  56. 56.
    Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci. 2013;123:9–24.CrossRefPubMedGoogle Scholar
  57. 57.
    Shokouhi G, Tubbs RS, Shoja MM, Hadidchi S, Ghorbanihaghjo A, Roshanger L, Farahani RM, Mesgari M, Oakes WJ. Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury. Child Nerv Syst. 2008;24:111–117.Google Scholar
  58. 58.
    Singh M, Jadhav HR. Melatonin: functions and ligands. Drug Discov Today. 2014;19:1410–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351:152–66.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kahlen JP, Nayeri S, Schrader M, Carlberg C. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem. 1995;270:7037–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Sugden D, Davidson K, Hough KA, Teh MT. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 2004;17:454–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays. 2014;36:778–87.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tresguerres JA, Kireev R, Tresguerres AF, Borras C, Vara E, Ariznavarreta C. Molecular mechanisms involved in the hormonal prevention of aging in the rat. J Steroid Biochem Mol Biol. 2008;108:318–26.CrossRefPubMedGoogle Scholar
  64. 64.
    Turek FW, Gillette MU. Melatonin, sleep and circadian rhythms: rationale for development of specific melatonin agonists. Sleep Med. 2004;5:523–32.CrossRefPubMedGoogle Scholar
  65. 65.
    Turgut M, Uyanıkgil Y, Baka M, Tunc AT, Yavaşoğlu A, Yurtseven ME, Kaplan S. Pinealectomy exaggerates and melatonin treatment suppresses neuroma formation of transected sciatic nerve in rats: gross morphological, histological and stereological analysis. J Pineal Res. 2005;38:284–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Turgut M, Erdogan S, Ergin K, Serter M. Melatonin ameliorates blood-brain barrier permeability, glutathione, and nitric oxide levels in the choroid plexus of the infantile rats with kaolin-induced hydrocephalus. Brain Res. 2007;1175:117–25.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15:345–57.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yonei Y, Hattori A, Tsutsui K, Okawa M, Ishizuka B. Effects of melatonin: basic studies and clinical applications. Anti-Ageing Med. 2010;7:85–91.Google Scholar
  69. 69.
    Zararsiz I, Kus I, Ogeturk M, Akpolat N, Kose E, Meydan S, Sarsilmaz M. Melatonin prevents formaldehyde-induced neurotoxicity in prefrontal cortex of rats: an immunohistochemical and biochemical study. Cell Biochem Funct. 2007;25:413–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhdanova IV, Tucci V. Melatonin, circadian rhythms, and sleep. Curr Treat Options Neurol. 2003;5:225–229.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Omur Gulsum Deniz
    • 1
  • Aysın Pınar Turkmen
    • 1
  • Mehmet Emin Onger
    • 1
  • Berrin Zuhal Altunkaynak
    • 1
  • Suleyman Kaplan
    • 1
  1. 1.Department of Histology and Embryology, Medical SchoolOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations