Antidepressant Drugs and Phosphodiesterases

  • Zhuoyou Chen
  • Xifei Yang
  • Ying Xu
  • Han-Ting Zhang


This section aims to introduce the antidepressants and phosphodiesterases (PDEs) from four aspects. First, the general principle and background information of antidepressants are introduced, and the relationship between antidepressant and PDE is discussed. It is important to note that recent studies have pointed to the potentially important roles of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression and the activity of antidepressant drugs. Serum BDNF levels are lower in depressed patients and increased in response to antidepressant treatment. Second, serum BDNF concentrations are positively related to cortical BDNF levels. It is, therefore, quite conceivable that increased serum BDNF levels after a long-term treatment with antidepressants are beneficial to depressed patients. Third, it has been shown that short-term SSRI treatment in depressed patients remediates amygdala hyperactivity in response to negative emotional stimuli prior to clinical improvement in depressed mood. Finally, PDE4, one of the 11 PDE families, is an important component of the cyclic adenosine monophosphate (cAMP) signaling cascade, which has been implicated in both pathophysiology and treatment of major depressive disorder (MDD).


Major Depressive Disorder Depressed Patient BDNF Level BDNF mRNA Alpha Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 2005;76:99–125.CrossRefPubMedGoogle Scholar
  2. 2.
    Lindsay RM, Wiegand SJ, Altar CA, Di Stefano PS. Neurotrophic factors: from molecule to man. Trends Neurosci. 1994;17:182–90. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.Google Scholar
  3. 3.
    Escobar ML, Figueroa-Guzman Y, Gomez-Palacio-Schjetnan A. In vivo insular cortex LTP induced by brain-derived neurotrophic factor. Brain Res. 2003;991:274–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Altar CA. Neurotrophins and depression. Trends Pharmacol Sci. 1999;20:59–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.CrossRefPubMedGoogle Scholar
  6. 6.
    D’Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disord. 2002;4:183–94.CrossRefPubMedGoogle Scholar
  7. 7.
    Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–61.PubMedGoogle Scholar
  8. 8.
    Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70–5.10.CrossRefPubMedGoogle Scholar
  10. 10.
    Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47.PubMedGoogle Scholar
  11. 11.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.12.CrossRefPubMedGoogle Scholar
  12. 12.
    Manji HK, Bitran JA, Masana MI, Chen GA, Hsiao JK, Risby ED, et al. Signal transduction modulation by lithium: cell culture, cerebral microdialysis and human studies. Psychopharmacol Bull. 1991;27:199–208.13.PubMedGoogle Scholar
  13. 13.
    Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 1996;19:378–83.14.CrossRefPubMedGoogle Scholar
  14. 14.
    Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychol pharmacol. 2001;25:505–13.CrossRefGoogle Scholar
  15. 15.
    De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience. 2004;128:597–604.CrossRefPubMedGoogle Scholar
  16. 16.
    Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology. 2005;51:234–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255:381–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:261–5.CrossRefGoogle Scholar
  19. 19.
    Piccinni A, Marazziti D, Catena M, Domenici L, Del Debbio A, Bianchi C, et al. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord. 2008;105:279–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res. 2008;42:521–5.Google Scholar
  21. 21.
    Yoshimura R, Mitoma M, Sugita A, Hori H, Okamoto T, Umene W, et al. Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:1034–7.CrossRefGoogle Scholar
  22. 22.
    Calabrese F, Molteni R, Maj PF, Cattaneo A, Gennarelli M, Racagni G, et al. Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein. Neuropsychopharmacology. 2007;32:2351–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Rantamaki T, Hendolin P, Kankaanpaa A, Mijatovic J, Piepponen P, Domenici E, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuro-Psychopharmacol. 2007;32:2152–62.27.Google Scholar
  24. 24.
    Lowther S, De Paermentier F, Horton RW, Tulloch IF, Crompton MR. Pharmacological differences between selective serotonin reuptake inhibitors: interaction with 5-HT2 and sigma binding sites in human brain in vitro. Fed Eur Biochem Soc Lett. 1995;5:281.Google Scholar
  25. 25.
    Dishir A, Kulkarni SK. Involvement of sigma-1 receptor modulation in the antidepressant action of venlafaxine. Neurosci Lett. 2007;420:204–8.CrossRefGoogle Scholar
  26. 26.
    Bermack JE, Debonnel G. Modulation of serotonergic neurotransmission by short-term treatment with sigma ligands. Br J Pharmacol. 2001;134:691–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fabre V, Hamon M. Mechanisms of action of antidepressants: new data from escitalopram. Encéphale. 2003;29:259–65.PubMedGoogle Scholar
  28. 28.
    Kozisek ME, Middlemas D, Bylund DB. The differential regulation of BDNF and TrkB levels in juvenile rats after four days of escitalopram and desipramine treatment. Neuropharmacology 2008;54:251–7.33. Fujimaki K, Morinobu S, Duman RS. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 2000,22:42–51.Google Scholar
  29. 29.
    Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatr. 2008;165:969–77.CrossRefPubMedGoogle Scholar
  30. 30.
    Bradley B, Matthews A. Negative self-schemata in clinical depression. Clin Psychol. 1983;22:173–81.Google Scholar
  31. 31.
    Gur RC, Erwin RJ, Gur RE, Zwil AS, Heimberg C, Kraemer HC. Facial emotion discrimination, II, behavioural findings in depression. Psychiatry Res. 1992;42:241–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Bouhuys AL, Geerts E, Gordijn MC. Depressed patients perceptions of facial emotions in depressed and remitted states are associated with relapse: a longitudinal study. J Nerv Ment Disordr. 1999;187:595–602.38.CrossRefGoogle Scholar
  33. 33.
    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment. An FMRI study. Biol Psychiatry. 2001;50:651–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Surguladze SA, Young AW, Senior C, Brebion G, Travis MJ, Phillips ML. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology. 2004;18:212–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schoning S, Ohrmann P, Bauer J, Pyka M, Kersting A, Arolt V, Heindel W, Dannlowski U. Automatic mood congruent amygdala responses to masked facial expressions in major depression. Biol Psychiatry. 2010;67:155–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry. 2009;195:102–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Norbury R, Mackay CE, Cowen PJ, Goodwin GM, Harmer CJ. Short-term antidepressant treatment and facial processing, functional magnetic resonance imaging study. Br J Psychiatry. 2007;90:531–2.CrossRefGoogle Scholar
  38. 38.
    Victor TA, Furey ML, Fromm SJ, Ohman A, Drevets WC. Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry. 2010;67:1128–38.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM. Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol Psychiatry. 2006;59:816–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Killgore WD, Yurgelen-Todd DA. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage. 2004;21:1215–23.CrossRefPubMedGoogle Scholar
  41. 41.
    Rainnie DG. Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol. 1999;82:69–85.PubMedGoogle Scholar
  42. 42.
    Murphy S, O’Sullivan U, Cowen PJ, Harmer CJ. Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry. 2009;194:535–40.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rawlings NB, Norbury R, Cowen PJ, Harmer CJ. A single dose of mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology. 2010;212:625–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Harmer CJ, Cowen PJ, Goodwin GM. Efficacy markers in depression. J Psychopharmacol. 2011;25:1148–58.CrossRefPubMedGoogle Scholar
  45. 45.
    Norbury R, Taylor MJ, Selvaraj S, Murphy SE, Harmer CJ, Cowen PJ. Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology. 2009;206:197–204.CrossRefPubMedGoogle Scholar
  46. 46.
    Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L, et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry. 1997;41:15–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Little JT, Ketter TA, Kimbrell TA, Dunn RT, Benson BE, Willis MW, et al. Bupropion and venlafaxine responders differ in pretreatment regional cerebral metabolism in unipolar depression. Biol Psychiatry. 2005;57:220–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Brannan SK, Mayberg HS, Jerabek PA, Mahurin RK, Tekell JL, Brickman JS, et al. Cingulate function in depression: a potential predictor of treatment response. NeuroReport. 1997;8:1057–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Saxena S, Brody AL, Ho ML, Zohrabi N, Maidment KM, Baxter LR. Differential brain metabolic predictors of response to paroxetine in obsessive compulsive disorder versus major depression. Am J Psychiatry. 2003;160:522–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Bruder GE, Stewart JW, McGrath PJ, Deliyannides D, Quitkin FM. Dichotic listening tests of functional brain asymmetry predict response to fluoxetine in depressed women and men. Neuropsychopharmacology. 2004;29:1752–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Dunkin JJ, Leuchter AF, Cook IA, Kasi-Godey JE, Abrams M, Rosenberg Thompson S. Executive dysfunction predicts nonresponse to fluoxetine in major depression. J Affect Disord. 2000;60:13–23.CrossRefPubMedGoogle Scholar
  52. 52.
    Taylor BP, Bruder GE, Stewart JW, McGrath PJ, Halperin J, Ehrlichman H, Quitkin FM. Psychomotor slowing as a predictor of fluoxetine nonresponse in depressed outpatients. Am J Pyschiatry. 2006;163:73–8.CrossRefGoogle Scholar
  53. 53.
    Bruder GE, Stewart JW, Tenke CE, McGrath PJ, Leite P, Bhattacharya N, Quitkin FM. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. 2001;48:416–25.CrossRefGoogle Scholar
  54. 54.
    Cook IA, Leuchter AF, Morgan M, Witte E, Stubbeman WF, Abrams M, et al. Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology. 2002;27:120–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Gallinat J, Bottlender R, Juckel G, Munke-Puchner A, Stotz G, Kuss HJ, et al. The loudness dependence of the auditory evoked N1/P2 component as a predictor of the acute SSRI response in depression. Psychopharmacology. 2000;148:404–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Kalayam B, Alexopoulos GS. A preliminary study of left frontal region error negativity and symptom improvement in geriatric depression. Am J Psychiatry. 2003;60:205–2056.Google Scholar
  57. 57.
    Pizzagalli D, Pascual-Marqui RD, Nitschke JB, Oakes TR, Larson CL, Abercrombie HC, et al. Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry. 2001;158:405–15.CrossRefPubMedGoogle Scholar
  58. 58.
    Ulrich G, Renfordt E, Frick K. The topographical distribution of alpha-activity in the resting EEG of endogenous-depressive inpatients with and without clinical-response to pharmacotherapy. Pharmacopsychiatry. 1986;19:272–3.CrossRefGoogle Scholar
  59. 59.
    Prichep LS, Mas F, Hollander E, Liebowitz M, John ER, Almas M, et al. Quantitative electroencephalographic subtyping of obsessive-compulsive disorder. Psychiatry Res. 1993;50:25–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Knott VJ, Telner JI, Lapierre YD, Browne M, Horn ER. Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disord. 1996;39:175–84.CrossRefPubMedGoogle Scholar
  61. 61.
    Cook IA, Leuchter AF, Witte E, Abrams M, Uijtdehaage SHJ, Stubbeman W, et al. Neurophysiologic predictors of treatment response to fluoxetine in major depression. Psychiatry Res. 1999;85:263–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Tenke CE, Kayser J. Reference-free quantification of EEG spectra: combining current source density (CSD) and frequency principal components analysis (fPCA). Clin Neurophysiol. 2005;116:2826–46.CrossRefPubMedGoogle Scholar
  63. 63.
    Bruder GE, Otto MW, McGrath PJ, Stewart JW, Fava M, Rosenbaum JF, Quitkin FM. Dichotic listening before and after fluoxetine treatment for major depression: relations of laterality to therapeutic response. Neuropsychopharmcology. 1996;15:171–9.CrossRefGoogle Scholar
  64. 64.
    Mulert C, Mulert C, Jucke IG, Brunnmeier M, Karch S, Leicht G, Mergl R, et al. Prediction of treatment response in major depression: integration of concepts. J Affect Disord. 2007;98:215–25.CrossRefPubMedGoogle Scholar
  65. 65.
    Suffin SC, Emory WH. Neurometric subgroups in attentional and affective disorders and their association with pharmacotherapeutic outcome. Clin Electroencephalogr. 1995;26:76–83.CrossRefPubMedGoogle Scholar
  66. 66.
    Pollock VE, Schneider LS. Topographic quantitative EEG in elderly subjects with major depression. Psychophysiology. 1990;27:438–44.CrossRefPubMedGoogle Scholar
  67. 67.
    Shagass C, Roemer RA, Josiassen RC. Some quantitative EEG findings in unmedicated and medicated major depressives. Neuropsychobiology. 1988;19:169–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Bruder GE, Fong R, Tenke CE, Leite P, Towey JP, Stewart JW, et al. Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study. Biol Psychiatry. 1997;41:939–48.CrossRefPubMedGoogle Scholar
  69. 69.
    Deldin PJ, Chiu P. Cognitive restructuring and EEG in major depression. Biol Psychol. 2005;70:141–51.CrossRefPubMedGoogle Scholar
  70. 70.
    Rybalkin SD, Yan C, Bornfeldt KE, et al. Cyclic GMP phosphodiesterases and regulation of smooth muscle function[J]. Circ Res. 2003;93(4):280–91.CrossRefPubMedGoogle Scholar
  71. 71.
    Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol. 2000;12:174–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Corbin JD, Turko IV, Beasley A, et al. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities[J]. Eur J Biochem. 2000;267(9):2760–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Halene TB, Siegel SJ. PDE inhibitors in psychiatry–future options for dementia, depression and schizophrenia?[J]. Drug Discov Today. 2007;12(19):870–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Rees A, Hardy GE, Barkham M. Covariance in the measurement of depression/anxiety and three Cluster C personality disorders (avoidant, dependent, obsessive-compulsive)[J]. J Affect Disord. 1997;45(3):143–53.CrossRefPubMedGoogle Scholar
  75. 75.
    Esposito K, Reierson GW, Luo HR, et al. Phosphodiesterase genes and antidepressant treatment response: a review[J]. Ann Med. 2009;41(3):177–85.CrossRefPubMedGoogle Scholar
  76. 76.
    Dal Piaz V, Giovannoni MP. Phosphodiesterase 4 inhibitors, structurally unrelated to rolipram, as promising agents for the treatment of asthma and other pathologies[J]. Eur J Med Chem. 2000;35(5):463–80.CrossRefPubMedGoogle Scholar
  77. 77.
    Rotella DP. Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov. 2002;1:674–82.CrossRefPubMedGoogle Scholar
  78. 78.
    Souness JE, Aldous D, Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors[J]. Immunopharmacology. 2000;47(2):127–62.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang HT, Huang Y, Mishler K, Roerig SC, O’Donnell JM. Interaction between the antidepressant-like behavioral effects of beta adrenergic agonists and the cyclic AMP PDE inhibitor rolipram in rats. Psychopharmacology (Berl). 2005;182(1):104–15.CrossRefGoogle Scholar
  80. 80.
    D’Sa C, Tolbert LM, Conti M, et al. Regulation of cAMP‐specific phosphodiesterases type 4B and 4D (PDE4) splice variants by cAMP signaling in primary cortical neurons[J]. J Neurochem. 2002;81(4):745–57.CrossRefPubMedGoogle Scholar
  81. 81.
    Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;370:1–18.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Le Jeune IR, et al. Cyclic AMP-dependent transcriptional up-regulation of phosphodiesterase 4D5 in human airway smooth muscle cells. Identification and characterization of a novel PDE4D5 promoter. J Biol Chem. 2002;277:35980–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Rena G, et al. Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic AMP-specific phosphodiesterase PDE4A10. Mol Pharmacol. 2001;59:996–1011.PubMedGoogle Scholar
  84. 84.
    Vicini E, Conti M. Characterization of an intronic promoter of a cyclic adenosine 3′,5′-monophosphate (cAMP)-specific phosphodiesterase gene that confers hormone and cAMP inducibility. Mol Endocrinol. 1997;11:839–50.PubMedGoogle Scholar
  85. 85.
    Wallace DA, et al. Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A cAMP phosphodiesterase gene. Mol Pharmacol. 2005;67:1920–34.CrossRefPubMedGoogle Scholar
  86. 86.
    Liu H, et al. Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways. A potential mechanism allowing for the coordinated regulation of PDE4D activity and expression in cells. J Biol Chem. 2000;275:26615–24.CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang HT. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs[J]. Curr Pharm Des. 2009;15(14):1688–98.CrossRefPubMedGoogle Scholar
  88. 88.
    Sette C, Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996;271:16526–34.CrossRefPubMedGoogle Scholar
  89. 89.
    Oki N, Takahashi S, Hidaka H, Conti M. Short term feedback regulation of cAMP in FRTL-5 thyroid cells – Role of PDE4D3 phosphodiesterase activation. J Biol Chem. 2000;275:10831–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Baillie GS, et al. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. Br J Pharmacol. 2000;131:811–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hoffmann R, et al. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 1999;18:893–903.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    MacKenzie SJ, et al. ERK2 mitogen activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J Biol Chem. 2000;275:16609–17.CrossRefPubMedGoogle Scholar
  93. 93.
    Laliberte F, et al. Conformational difference between PDE4 apoenzyme and holoenzyme. Biochemistry. 2000;39:6449–58.CrossRefPubMedGoogle Scholar
  94. 94.
    Liu S, et al. Dissecting the cofactor dependent and independent bindings of PDE4 inhibitors. Biochemistry. 2001;40:10179–86.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhang KYJ, et al. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004;15:279–86.CrossRefPubMedGoogle Scholar
  96. 96.
    Card GL, et al. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure. 2004;12:2233–47.CrossRefPubMedGoogle Scholar
  97. 97.
    Hang KYJ, et al. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004;15:279–86.CrossRefGoogle Scholar
  98. 98.
    Xu RX, et al. Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science. 2000;288:1822–5.CrossRefPubMedGoogle Scholar
  99. 99.
    Huai Q, et al. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure (Camb). 2003;11:865–73.CrossRefGoogle Scholar
  100. 100.
    Xu RX, et al. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with amp 8-br-AMP, and rolipram. J Mol Biol. 2004;337:355–65.CrossRefPubMedGoogle Scholar
  101. 101.
    Kenk M, Greene M, Thackeray J, et al. In vivo selective binding of (R)-[11 C] rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues[J]. Nucl Med Biol. 2007;34(1):71–7.CrossRefPubMedGoogle Scholar
  102. 102.
    Reiach JS, Li PP, Warsh JJ, Kish SJ, Young LT. Reduced adenylyl cyclase immunolabeling and activity in postmortem temporal cortexo depressed suicide victims. J Affect Disord. 1999;56:141–51.CrossRefPubMedGoogle Scholar
  103. 103.
    Dwivedi Y, Conley RR, Roberts RC, Tamminga CA, Pandey GN. [3 H]cAMP binding sites and protein kinase a activity in the prefrontal cortex of suicide victims. Am J Psychiatry. 2002;159:66–73.CrossRefPubMedGoogle Scholar
  104. 104.
    Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet. 1998;352:1754–5.CrossRefPubMedGoogle Scholar
  105. 105.
    Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.CrossRefPubMedGoogle Scholar
  106. 106.
    Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry. 1999;46:1181–91.CrossRefPubMedGoogle Scholar
  107. 107.
    Houslay MD, Sullivan M, Bolger GB. The multienzyme PDE4 cyclic adenosin monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. In: August TJ, Murad F, Anders MW, Coyle JT, editors. Advances in pharmacology. London: Academic Press; 1998. p. 225–342.Google Scholar
  108. 108.
    Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O’Donnell JM. Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem. 1997;69:2397–404.CrossRefPubMedGoogle Scholar
  109. 109.
    Campos-Toimil M, Orallo F, Takeda K, Lugnier C. Short-term or long-term treatments with a phosphodiesterase-4(PDE4) inhibitor result in opposing agonist-induced Ca(2+) responses in endothelial cells. Br J Pharmacol. 2008;154:82–92.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Tsukada H, Harada N, Ohba H, Nishiyama S, Kakiuchi T. Facilitation of dopaminergic neural transmission does not affect [11C] SCH23390 binding to the striatal D, dopamine receptors, but the facilitation enhances phosphodiesterase type-IV activity through D, receptors: PET studies in the conscious monkey brain. Synapse. 2001;42:258–65.CrossRefPubMedGoogle Scholar
  111. 111.
    Hoffmann R, Wilkinson IR, McCallum JF, Engels P, Houslay MD. cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model. Biochem J. 1998;333:139–49.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Hansen G, et al. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci U S A. 2000;97:6751–6.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhang HT, Huang Y, Masood A, et al. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B)[J]. Neuropsychopharmacology. 2008;33(7):1611–23.CrossRefPubMedGoogle Scholar
  114. 114.
    Ye Y, O’Donnell JM. Diminished noradrenergic stimulation reduces the activity of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase in rat cerebral cortex. J Neurochem. 1996;66:1894–902.CrossRefPubMedGoogle Scholar
  115. 115.
    Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 1990;9:3545–50.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci Off J Soc Neurosci. 1992;12:4793–9.Google Scholar
  117. 117.
    Zhang HT, Crissman AM, Dorairaj NR, Chandler LJ, O’Donnell JM. Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology. 2000;23:198–204.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of NeurologyChangzhou Second People’s HospitalChangzhouChina
  2. 2.Toxicology LaboratoryShenzhen Center for Disease Control and PreventionShenzhenChina
  3. 3.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesState University of New York at BuffaloBuffaloUSA
  4. 4.Departments of Behavioral Medicine and PsychiatryWest Virginia University Health Sciences CenterMorgantownUSA
  5. 5.Department of Physiology and PharmacologyWest Virginia University Health Sciences CenterMorgantownUSA

Personalised recommendations