Corticotropin-Releasing Factor Receptors as a Potential Target in the Developments of Antidepressant Drugs



Depression is a highly prevalent form of mental illness that is one of the leading causes of disability worldwide. Because stressful life events frequently trigger its symptoms, depression is often characterized as a stress-related disorder, and chronic exposure to stress has been hypothesized to lead to long-term alterations of the physiological systems thought to mediate the stress response. Understanding the biological changes resulting from chronic stress is important because these long-term modifications may underlie the symptoms of depression. The corticotropin-releasing factor (CRF) system has long been considered to be one of the body’s major regulators of the stress response. Two genes encoding distinct G-protein-coupled CRF receptors have been identified: the CRF1 receptor and CRF2 receptor. Endogenous ligands for these receptors, including CRF, urocortin 1, urocortin 2, and urocortin 3, display different binding affinities for the two CRF-receptor subtypes, as well as distinct behavioral profiles in animal models of depression and anxiety. These findings have led to the hypothesis that CRF1 and CRF2 receptors may play distinct roles in the regulation of stress-related behavior, with the CRF1 receptor underlying the activational components of the stress response and the CRF2 receptor acting as a compensatory coping mechanism. The present chapter will review the role of CRF-related ligands and CRF receptors in depression and proposes targeting the CRF system as a potential pharmacotherapy for depressive disorders.


Chronic Mild Stress Inescapable Shock Acoustic Startle Response Lateral Septum CRF2 Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adrenocorticotropic hormone




Bed nucleus of the stria terminalis


Corticotropin-releasing factor


Flinders resistant line


Flinders sensitive line


Hamilton anxiety scale


Hamilton depression scale

HPA axis

Hypothalamic-pituitary-adrenal axis


Selective serotonin reuptake inhibitor

Ucn 1

Urocortin 1

Ucn 2

Urocortin 2

Ucn 3

Urocortin 3


  1. 1.
    World Health Organization Depression Fact Sheet. 2012. Last accessed 18 Sept 2014.
  2. 2.
    Selye H. A syndrome produced by diverse noxious agents. Nature. 1936;32:138.Google Scholar
  3. 3.
    Burchfield SR. The stress response: a new perspective. Psychosom Med. 1979;41:661–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213:1394–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Bilezikjian L, Bloom F, Rivier J. Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res. 1983;39:245–70.PubMedGoogle Scholar
  6. 6.
    Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev. 1990;15:71–100.CrossRefPubMedGoogle Scholar
  7. 7.
    Koob GF, Heinrichs SC, Menzaghi F, Pich EM, Britton KT. Corticotropin releasing factor, stress, and behavior. Sem Neurosci. 1994;6:221–9.CrossRefGoogle Scholar
  8. 8.
    Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 1999;848:141–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Irwin M, Vale W, Rivier C. Central corticotropin-releasing factor mediates the suppressive effect of stress on natural killer cytotoxicity. Endocrinology. 1990;126:2837–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Taché Y, Gunion M, Stephens R. CRF: central nervous system action to influence gastrointestinal function and role in the gastrointestinal response to stress. In: De Souza EB, Nemeroff CB, eds. Corticotropin-releasing factor: basic and clinical studies of a neuropeptide. Boca Raton, FL: CRC Press. 1989. p. 299–307.Google Scholar
  11. 11.
    Brown MR. Brain peptide regulation of autonomic nervous and neuroendocrine functions. In: Brown MR, Koob G, Rivier C, eds. Stress Neurobiology and Neuroendocrinology. New York, NY: Marcel Dekker Inc. 1991. p. 193–216.Google Scholar
  12. 12.
    Fisher LA. Central actions of corticotropin-releasing factor on autonomic nervous activity and cardiovascular functioning. Cibia Found Symp. 1993;discussion:243–57.Google Scholar
  13. 13.
    Chastrette N, Cespublio R, Jouvet M. Proopiomelancortin(POMC)-derived peptides and sleep in the rat. Part 1. Hypnogenic properties of ACTH derivatives. Neuropeptides. 1990;15:61–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Rivier C. Alcohol stimulates ACTH secretion in the rat: mechanisms of action and interactions with other stimuli. Alcohol Clin Exp Res. 1996;20:240–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Eaves M, Thatcher-Britton K, Rivier J, Vale W, Koob GF. Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats. Peptides. 1985;6:923–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Britton KT, Lee G, Dana R, Risch SC, Koob GF. Activating and ‘anxiogenic’ effects of corticotropin releasing factor are not inhibited by blockade of the pituitary-adrenal system with dexamethasone. Life Sci. 1986;39:1281–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Behan DP, Grigoriadis DE, Lovenberg T, Chalmers D, Heinrichs S, Liaw C, De Souza EB. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF- binding protein: implications for the treatment of CNS disorders. Mol Psychiatry. 1996;1:265–77.PubMedGoogle Scholar
  18. 18.
    Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature. 1982;297:331–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Koob GF, Swerdlow N, Seeligson M, Eaves M, Sutton R, Rivier J, Vale W. Effects of alpha-flupenthixol and naloxone on CRF-induced locomotor activation. Neuroendocrinology. 1984;39:459–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Britton KT, Morgan J, Rivier J, Vale W, Koob GF. Chlordiazepoxide attenuates response suppression induced by corticotropin-releasing factor in the conflict test. Psychopharmacology (Berl). 1985;86:170–4.CrossRefGoogle Scholar
  21. 21.
    Swerdlow NR, Geyer MA, Vale WW, Koob GF. Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology (Berl). 1986;88:147–52.CrossRefGoogle Scholar
  22. 22.
    Cole BJ, Koob GF. Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor. J Pharmacol Exp Ther. 1988;247:902–10.PubMedGoogle Scholar
  23. 23.
    Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:1342–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Valdez GR. Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date. CNS Drugs. 2006;20:887–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Zorrilla EP, Koob GF. The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs. 2004;13:799–828.CrossRefPubMedGoogle Scholar
  26. 26.
    Zorrilla EP, Koob GF. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today. 2010;15:371–83.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci. 1995;15:6340–50.PubMedGoogle Scholar
  28. 28.
    Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A. 1995;92:2969–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale W. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378:287–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Spina M, Merlo-Pich E, Chan RK, Basso AM, Rivier J, Vale W, Koob GF. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science. 1996;273:1561–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Spina MG, Merlo-Pich E, Akwa Y, Balducci C, Basso AM, Zorrilla EP, Britton KT, Rivier J, Vale WW, Koob GF. Time-dependent induction of anxiogenic-like effects after central infusion of urocortin or corticotropin-releasing factor in the rat. Psychopharmacology (Berl). 2002;160:113–21.CrossRefGoogle Scholar
  32. 32.
    Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98:2843–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7:605–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J, Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, Vale WW. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A. 2001;98:7570–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li C, Vaughan J, Sawchenko PE, Vale WW. Urocortin III-immunoreactive projections in the rat brain: partial overlap with sites of type 2 corticotropin-releasing factor receptor expression. J Neurosci. 2002;22:991–1001.PubMedGoogle Scholar
  36. 36.
    Möller C, Wiklund L, Sommer W, Thorsell A, Heilig M. Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions. Brain Res. 1997;760:94–101.CrossRefPubMedGoogle Scholar
  37. 37.
    Gewirtz JC, McNish KA, Davis M. Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22:625–48.CrossRefPubMedGoogle Scholar
  38. 38.
    Hatalski CG, Guirguis C, Baram TZ. Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat. J Neuroendocrinol. 1998;10:663–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428:191–212.CrossRefPubMedGoogle Scholar
  40. 40.
    Valdez GR, Inoue K, Koob GF, Rivier J, Vale WW, Zorrilla EP. Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. Brain Res. 2002;943:142–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF. Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res. 2003;980:206–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Venihaki M, Sakihara S, Subramanian S, Dikkes P, Weninger SC, Liapakis G, Graf T, Majzoub JA. Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol. 2004;16:411–22.CrossRefPubMedGoogle Scholar
  43. 43.
    Pelleymounter MA, Joppa M, Ling N, Foster AC. Pharmacological evidence supporting a role for central corticotropin-releasing factor(2) receptors in behavioral, but not endocrine, response to environmental stress. J Pharmacol Exp Ther. 2002;302:145–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Overstreet DH, Friedman E, Mathe AA, Yadid G. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev. 2005;29:739–59.CrossRefPubMedGoogle Scholar
  45. 45.
    Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Eur J Pharmacol. 2004;499:135–46.CrossRefPubMedGoogle Scholar
  46. 46.
    Dournes C, Beeske S, Belzung C, Griebel G. Deep brain stimulation in treatment-resistant depression in mice: comparison with the CRF1 antagonist, SSR125543. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:213–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Bale TL, Vale WW. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J Neurosci. 2003;23:5295–301.PubMedGoogle Scholar
  48. 48.
    Tanaka M, Telegdy G. Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice. Brain Res Bull. 2008;75:509–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Lenze EJ, Mulsant BH, Mohlman J, Shear MK, Dew MA, Schulz R, Miller MD, Tracey B, Reynolds 3rd CF. Generalized anxiety disorder in late life: lifetime course and comorbidity with major depressive disorder. Am J Geriatr Psychiatry. 2005;13:77–80.CrossRefPubMedGoogle Scholar
  50. 50.
    Lenze EJ, Mulsant BH, Shear MK, Alexopoulos GS, Frank E, Reynolds 3rd CF. Comorbidity of depression and anxiety disorders in later life. Depress Anxiety. 2001;14:86–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Lenze EJ, Mulsant BH, Shear MK, Schulberg HC, Dew MA, Begley AE, Pollock BG, Reynolds 3rd CF. Comorbid anxiety disorders in depressed elderly patients. Am J Psychiatry. 2000;157:722–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Borelli KG, Albrechet-Souza L, Fedoce AG, Fabri DS, Resstel LB, Brandao ML. Conditioned fear is modulated by CRF mechanisms in the periaqueductal gray columns. Horm Behav. 2013;63:791–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Krahn DD, Gosnell BA, Grace M, Levine AS. CRF antagonist partially reverses CRF- and stress-induced effects on feeding. Brain Res Bull. 1986;17:285–90.CrossRefPubMedGoogle Scholar
  54. 54.
    Arase K, York DA, Shimizu H, Shargill N, Bray GA. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol. 1988;255:E255–9.PubMedGoogle Scholar
  55. 55.
    Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14:2579–84.PubMedGoogle Scholar
  56. 56.
    Flandreau EI, Bourke CH, Ressler KJ, Vale WW, Nemeroff CB, Owens MJ. Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala. Psychoneuroendocrinology. 2013;38:1349–61.CrossRefPubMedGoogle Scholar
  57. 57.
    Swerdlow NR, Britton KT, Koob GF. Potentiation of acoustic startle by corticotropin-releasing factor (CRF) and by fear are both reversed by alpha-helical CRF (9-41). Neuropsychopharmacology. 1989;2:285–92.CrossRefPubMedGoogle Scholar
  58. 58.
    Cruz AP, Frei F, Graeff FG. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav. 1994;49:171–6.Google Scholar
  59. 58.
    Menzaghi F, Howard RL, Heinrichs SC, Vale W, Rivier J, Koob GF. Characterization of a novel and potent corticotropin-releasing factor antagonist in rats. J Pharmacol Exp Ther. 1994;269:564–72.PubMedGoogle Scholar
  60. 59.
    Spina MG, Basso AM, Zorrilla EP, Heyser CJ, Rivier J, Vale W, Merlo-Pich E, Koob GF. Behavioral effects of central administration of the novel CRF antagonist astressin in rats. Neuropsychopharmacology. 2000;22:230–9.CrossRefPubMedGoogle Scholar
  61. 60.
    Heinrichs SC, Menzaghi F, Pich EM, Baldwin HA, Rassnick S, Britton KT, Koob GF. Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology. 1994;11:179–86.CrossRefPubMedGoogle Scholar
  62. 61.
    Macey DJ, Koob GF, Markou A. CRF and urocortin decreased brain stimulation reward in the rat: reversal by a CRF receptor antagonist. Brain Res. 2000;866:82–91.CrossRefPubMedGoogle Scholar
  63. 62.
    Swiergiel AH, Zhou Y, Dunn AJ. Effects of chronic footshock, restraint and corticotropin-releasing factor on freezing, ultrasonic vocalization and forced swim behavior in rats. Behav Brain Res. 2007;183:178–87.CrossRefPubMedGoogle Scholar
  64. 63.
    Dunn AJ, Swiergiel AH. Effects of acute and chronic stressors and CRF in rat and mouse tests for depression. Ann N Y Acad Sci. 2008;1148:118–26.CrossRefPubMedGoogle Scholar
  65. 64.
    Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.CrossRefPubMedGoogle Scholar
  66. 65.
    Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron. 1998;20:1093–102.CrossRefPubMedGoogle Scholar
  67. 66.
    Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor. Nat Genet. 1998;19:162–6.CrossRefPubMedGoogle Scholar
  68. 67.
    Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale W, Gold LH. Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res. 1999;835:1–9.CrossRefPubMedGoogle Scholar
  69. 68.
    Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale WW, Gold LH. Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Endocrinology. 2000;141:2698–702.CrossRefPubMedGoogle Scholar
  70. 69.
    Schulz DW, Mansbach RS, Sprouse J, Braselton JP, Collins J, Corman M, Dunaiskis A, Faraci S, Schmidt AW, Seeger T, Seymour P, Tingley 3rd FD, Winston EN, Chen YL, Heym J. CP-154,526: a potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci U S A. 1996;93:10477–82.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 70.
    Mansbach RS, Brooks EN, Chen YL. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol. 1997;323:21–6.CrossRefPubMedGoogle Scholar
  72. 71.
    Maier SF, Seligman MEP. Learned helplessness: theory and evidence. J Exp Psychol Gen. 1976;105:3–46.CrossRefGoogle Scholar
  73. 72.
    Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K. Involvement of corticotropin-releasing factor subtype 1 receptor in the acquisition phase of learned helplessness in rats. Life Sci. 2001;69:1241–8.CrossRefPubMedGoogle Scholar
  74. 73.
    Takamori K, Kawashima N, Chaki S, Nakazato A, Kameo K. Involvement of the hypothalamus-pituitary-adrenal axis in antidepressant activity of corticotropin-releasing factor subtype 1 receptor antagonists in the rat learned helplessness test. Pharmacol Biochem Behav. 2001;69:445–9.CrossRefPubMedGoogle Scholar
  75. 74.
    Chaki S, Nakazato A, Kennis L, Nakamura M, Mackie C, Sugiura M, Vinken P, Ashton D, Langlois X, Steckler T. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur J Pharmacol. 2004;485:145–58.CrossRefPubMedGoogle Scholar
  76. 75.
    Li YW, Fitzgerald L, Wong H, Lelas S, Zhang G, Lindner MD, Wallace T, McElroy J, Lodge NJ, Gilligan P, Zaczek R. The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists. CNS Drug Rev. 2005;11:21–52.CrossRefPubMedGoogle Scholar
  77. 76.
    Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology. 1996;137:5747–50.PubMedGoogle Scholar
  78. 77.
    Jutkiewicz EM, Wood SK, Houshyar H, Hsin LW, Rice KC, Woods JH. The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats. Psychopharmacology (Berl). 2005;180:215–23.CrossRefGoogle Scholar
  79. 78.
    Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrie P. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4- methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther. 2002;301:333–45.CrossRefPubMedGoogle Scholar
  80. 79.
    Yamano M, Yuki H, Yasuda S, Miyata K. Corticotropin-releasing hormone receptors mediate consensus interferon-alpha YM643-induced depression-like behavior in mice. J Pharmacol Exp Ther. 2000;292:181–7.PubMedGoogle Scholar
  81. 80.
    Overstreet DH, Griebel G. Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol. 2004;497:49–53.CrossRefPubMedGoogle Scholar
  82. 81.
    Overstreet DH, Keeney A, Hogg S. Antidepressant effects of citalopram and CRF receptor antagonist CP-154,526 in a rat model of depression. Eur J Pharmacol. 2004;492:195–201.CrossRefPubMedGoogle Scholar
  83. 82.
    Ducottet C, Griebel G, Belzung C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:625–31.CrossRefPubMedGoogle Scholar
  84. 83.
    Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9:278–86. 224.CrossRefPubMedGoogle Scholar
  85. 84.
    Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000;34:171–81.CrossRefPubMedGoogle Scholar
  86. 85.
    Kunzel HE, Zobel AW, Nickel T, Ackl N, Uhr M, Sonntag A, Ising M, Holsboer F. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res. 2003;37:525–33.CrossRefPubMedGoogle Scholar
  87. 86.
    Held K, Kunzel H, Ising M, Schmid DA, Zobel A, Murck H, Holsboer F, Steiger A. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J Psychiatr Res. 2004;38:129–36.CrossRefPubMedGoogle Scholar
  88. 87.
    Kunzel HE, Ising M, Zobel AW, Nickel T, Ackl N, Sonntag A, Holsboer F, Uhr M. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J Psychiatr Res. 2005;39:173–7.CrossRefPubMedGoogle Scholar
  89. 88.
    Ising M, Zimmermann US, Kunzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology. 2007;32:1941–9.CrossRefPubMedGoogle Scholar
  90. 89.
    Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165:617–20.CrossRefPubMedGoogle Scholar
  91. 90.
    Coric V, Feldman HH, Oren DA, Shekhar A, Pultz J, Dockens RC, Wu X, Gentile KA, Huang SP, Emison E, Delmonte T, D’Souza BB, Zimbroff DL, Grebb JA, Goddard AW, Stock EG. Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in generalized anxiety disorder. Depress Anxiety. 2010;27:417–25.CrossRefPubMedGoogle Scholar
  92. 91.
    Effects of corticotropin-releasing hormone receptor 1 (CRH1) antagonism on stress-induced craving in alcoholic women with high anxiety. 2014. Last accessed 18 Sept 2014.
  93. 92.
    Pexacerfont to reduce stress-induced tobacco craving. 2014. Last accessed 18 Sept 2014.
  94. 93.
    Corticotropin-releasing hormone receptor 1 (CRH1) antagonism in anxious alcoholics. 2014. Last accessed 18 Sept 2014.
  95. 94.
    Pexacerfont for stress-induced food craving. 2013. Last accessed 18 Sept 2014.
  96. 95.
    Pelleymounter MA, Joppa M, Carmouche M, Cullen MJ, Brown B, Murphy B, Grigoriadis DE, Ling N, Foster AC. Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther. 2000;293:799–806.PubMedGoogle Scholar
  97. 96.
    Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet. 2000;24:410–4.CrossRefPubMedGoogle Scholar
  98. 97.
    Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, Hermanson O, Rosenfeld MG, Spiess J. Deletion of crhr2 reveals an anxiolytic role for corticotropin- releasing hormone receptor-2. Nat Genet. 2000;24:415–9.CrossRefPubMedGoogle Scholar
  99. 98.
    Isogawa K, Akiyoshi J, Tsutsumi T, Kodama K, Horinouti Y, Nagayama H. Anxiogenic-like effect of corticotropin-releasing factor receptor 2 antisense oligonucleotides infused into rat brain. J Psychopharmacol. 2003;17:409–13.CrossRefPubMedGoogle Scholar
  100. 99.
    Elharrar E, Warhaftig G, Issler O, Sztainberg Y, Dikshtein Y, Zahut R, Redlus L, Chen A, Yadid G. Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol Psychiatry. 2013;74:827–36.CrossRefPubMedGoogle Scholar
  101. 100.
    Takahashi LK, Ho SP, Livanov V, Graciani N, Arneric SP. Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res. 2001;902:135–42.CrossRefPubMedGoogle Scholar
  102. 101.
    Ho SP, Takahashi LK, Livanov V, Spencer K, Lesher T, Maciag C, Smith MA, Rohrbach KW, Hartig PR, Arneric SP. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor-2 receptor. Brain Res Mol Brain Res. 2001;89:29–40.CrossRefPubMedGoogle Scholar
  103. 102.
    Zorrilla EP, Roberts AJ, Rivier JE, Koob GF. Anxiolytic-like effects of antisauvagine-30 in mice are not mediated by CRF2 receptors. PLoS One. 2013;8:e63942.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 103.
    Hoare SR, Sullivan SK, Fan J, Khongsaly K, Grigoriadis DE. Peptide ligand binding properties of the corticotropin-releasing factor (CRF) type 2 receptor: pharmacology of endogenously expressed receptors, G-protein-coupling sensitivity and determinants of CRF2 receptor selectivity. Peptides. 2005;26:457–70.CrossRefPubMedGoogle Scholar
  105. 104.
    Hoare SR, Sullivan SK, Schwarz DA, Ling N, Vale WW, Crowe PD, Grigoriadis DE. Ligand affinity for amino-terminal and juxtamembrane domains of the corticotropin releasing factor type I receptor: regulation by G-protein and nonpeptide antagonists. Biochemistry. 2004;43:3996–4011.CrossRefPubMedGoogle Scholar
  106. 105.
    Valdez GR, Sabino V, Koob GF. Increased anxiety-like behavior and ethanol self-administration in dependent rats: reversal via corticotropin-releasing factor-2 receptor activation. Alcohol Clin Exp Res. 2004;28:865–72.CrossRefPubMedGoogle Scholar
  107. 106.
    Radulovic J, Ruhmann A, Liepold T, Spiess J. Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci. 1999;19:5016–25.PubMedGoogle Scholar
  108. 107.
    Menard J, Treit D. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol Behav. 1996;60:845–53.CrossRefPubMedGoogle Scholar
  109. 108.
    Yadin E, Thomas E, Grishkat HL, Strickland CE. The role of the lateral septum in anxiolysis. Physiol Behav. 1993;53:1077–83.CrossRefPubMedGoogle Scholar
  110. 109.
    Henry B, Vale W, Markou A. The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J Neurosci. 2006;26:9142–52.CrossRefPubMedGoogle Scholar
  111. 110.
    Risbrough VB, Hauger RL, Pelleymounter MA, Geyer MA. Role of corticotropin releasing factor (CRF) receptors 1 and 2 in CRF-potentiated acoustic startle in mice. Psychopharmacology (Berl). 2003;170:178–87.CrossRefGoogle Scholar
  112. 111.
    Risbrough VB, Hauger RL, Roberts AL, Vale WW, Geyer MA. Corticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior. J Neurosci. 2004;24:6545–52.CrossRefPubMedGoogle Scholar
  113. 112.
    Tran L, Schulkin J, Greenwood-Van Meerveld B. Importance of CRF receptor-mediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. Neuropsychopharmacology. 2014;39:2633–45.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 113.
    Chen A, Zorrilla E, Smith S, Rousso D, Levy C, Vaughan J, Donaldson C, Roberts A, Lee KF, Vale W. Urocortin 2-deficient mice exhibit gender-specific alterations in circadian hypothalamus-pituitary-adrenal axis and depressive-like behavior. J Neurosci. 2006;26:5500–10.CrossRefPubMedGoogle Scholar
  115. 114.
    Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF. Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci. 2003;23:1019–25.PubMedGoogle Scholar
  116. 115.
    Galard R, Catalan R, Castellanos JM, Gallart JM. Plasma corticotropin-releasing factor in depressed patients before and after the dexamethasone suppression test. Biol Psychiatry. 2002;51:463–8.CrossRefPubMedGoogle Scholar
  117. 116.
    Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry. 1988;45:577–9.CrossRefPubMedGoogle Scholar
  118. 117.
    Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology. 1994;60:436–44.CrossRefPubMedGoogle Scholar
  119. 118.
    Bornstein SR, Webster EL, Torpy DJ, Richman SJ, Mitsiades N, Igel M, Lewis DB, Rice KC, Joost HG, Tsokos M, Chrousos GP. Chronic effects of a nonpeptide corticotropin-releasing hormone type I receptor antagonist on pituitary-adrenal function, body weight, and metabolic regulation. Endocrinology. 1998;139:1546–55.PubMedGoogle Scholar
  120. 119.
    Broadbear JH, Winger G, Rice KC, Woods JH. Antalarmin, a putative CRH-RI antagonist, has transient reinforcing effects in rhesus monkeys. Psychopharmacology (Berl). 2002;164:268–76.CrossRefGoogle Scholar
  121. 120.
    de Groote L, Penalva RG, Flachskamm C, Reul JM, Linthorst AC. Differential monoaminergic, neuroendocrine and behavioural responses after central administration of corticotropin-releasing factor receptor type 1 and type 2 agonists. J Neurochem. 2005;94:45–56.CrossRefPubMedGoogle Scholar
  122. 121.
    Ohata H, Shibasaki T. Effects of urocortin 2 and 3 on motor activity and food intake in rats. Peptides. 2004;25:1703–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of PsychologyGrand Valley State UniversityAllendaleUSA

Personalised recommendations