Skip to main content

The Role of Vasopressin in Anxiety and Depression

  • Chapter
  • First Online:

Abstract

The nonapeptide vasopressin (Avp) is an important player in an animal’s response to stress. As an integral part of the hypothalamic-pituitary-adrenal (HPA) axis, Avp has been identified as a potential contributor to stress-related disorders, such as anxiety and depression, as they are characterized by impairments of the HPA axis. Avp mediates its effects through three receptor subtypes: the Avp 1a receptor (Avpr1a), the Avp 1b receptor (Avpr1b), and the Avp 2 receptor (Avpr2). While the Avpr1a and Avpr1b are expressed in the central nervous system, the Avpr2 appears to be restricted to the periphery. In rodents, the Avpr1b has consistently been implicated in the modulation of anxiety- and depression-related behaviors, and these findings are supported by the human literature. In depressed humans, serum concentrations of Avp are abnormally high and polymorphisms of the Avpr1b are associated with resilience to the development of mood disorders. Moreover, recent data suggests that administration of an Avpr1b antagonist can alleviate symptoms of depression and has shed light on the potential clinical relevance of the Avpergic system to anxiety and depression. In this chapter, we review the recent scientific literature from both animal and human studies regarding the contributions of Avp and its receptors to stress, anxiety, and depression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acher R, Chauvet J. The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors. Front Neuroendocrinol. 1995;16:237–89.

    Article  CAS  PubMed  Google Scholar 

  2. Adkins-Regan E. Neuroendocrinology of social behavior. ILAR J. 2009;50:5–14.

    Article  CAS  PubMed  Google Scholar 

  3. Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol. 1994;15:321–50.

    Article  CAS  PubMed  Google Scholar 

  4. Aguilera G, Rabadan-Diehl C. Regulation of vasopressin V1b receptors in the anterior pituitary gland. Exp Physiol. 2000;85:S19–26.

    Article  Google Scholar 

  5. Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept. 2000;96:23–9.

    Article  CAS  PubMed  Google Scholar 

  6. Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog Brain Res. 2008;170:29–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albers HE. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Horm Behav. 2012;61:283–92.

    Article  CAS  PubMed  Google Scholar 

  8. Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol. 2014;36:49–71.

    Article  CAS  PubMed  Google Scholar 

  9. Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I. Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone and vasopressin in rats. Brain Res. 1986;397:297–307.

    Article  CAS  PubMed  Google Scholar 

  10. Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986;7:351–78.

    Article  CAS  PubMed  Google Scholar 

  11. Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol. 1993;14:76–122.

    Article  CAS  PubMed  Google Scholar 

  12. Antoni FA, Holmes MC, Jones MT. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides. 1983;4:411–5.

    Article  CAS  PubMed  Google Scholar 

  13. Appenrodt E, Schnabel R, Schwarzberg H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav. 1998;64:543–7.

    Article  CAS  PubMed  Google Scholar 

  14. Arriza JL, Simerly RB, Swanson LW, Evans RM. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron. 1988;1:887–900.

    Article  CAS  PubMed  Google Scholar 

  15. Balazsfi D, Pinter O, Klausz B, Kovacs KB, Fodor A, Torok B, Engelmann M, Zelena D. Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology. 2014;51C:11–23.

    Google Scholar 

  16. Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51:372–90.

    Article  CAS  PubMed  Google Scholar 

  17. Barberis C, Tribollet E. Vasopressin and oxytocin receptors in the central nervous system. Crit Rev Neurobiol. 1996;10:119–54.

    Article  CAS  PubMed  Google Scholar 

  18. Bartanusz V, Jezova D, Bertini LT, Tilders FJ, Aubry JM, Kiss JZ. Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology. 1993;132:895–902.

    CAS  PubMed  Google Scholar 

  19. Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron. 2005;47:503–13.

    Article  CAS  PubMed  Google Scholar 

  20. Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29:483–93.

    Article  CAS  Google Scholar 

  21. Bielsky IF, Hu SB, Young LJ. Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav Brain Res. 2005;164:132–6.

    Article  CAS  PubMed  Google Scholar 

  22. Birnbaumer M. Vasopressin receptors. Trends Endocrinol Metab. 2000;11:406–10.

    Article  CAS  PubMed  Google Scholar 

  23. Bleickardt CJ, Mullins DE, Macsweeney CP, Werner BJ, Pond AJ, Guzzi MF, Martin FD, Varty GB, Hodgson RA. Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like behavior. Psychopharmacology. 2009;202:711–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bourin M, Hascoet M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.

    Article  CAS  PubMed  Google Scholar 

  25. Bourin M, Petit-Demouliere B, Dhonnchadha BN, Hascoet M. Animal models of anxiety in mice. Fundam Clin Pharmacol. 2007;21:567–74.

    Article  CAS  PubMed  Google Scholar 

  26. Bowers G, Cullinan WE, Herman JP. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci. 1998;18:5938–47.

    CAS  PubMed  Google Scholar 

  27. Breuer ME, van Gaalen MM, Wernet W, Claessens SE, Oosting RS, Behl B, Korte SM, Schoemaker H, Gross G, Olivier B, Groenink L. SSR149415, a non-peptide vasopressin V1b receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedeberg’s Arch Pharmacol. 2009;379:101–6.

    Article  CAS  Google Scholar 

  28. Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tiss Res. 1978;192:423–35.

    Article  CAS  Google Scholar 

  29. Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001;81:1197–267.

    CAS  PubMed  Google Scholar 

  30. Caldwell HK. Neurobiology of sociability. Adv Exp Med Biol. 2012;739:187–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caldwell HK, Dike OE, Stevenson EL, Storck K, Young 3rd WS. Social dominance in male vasopressin 1b receptor knockout mice. Horm Behav. 2010;58:257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caldwell HK, Lee HJ, Macbeth AH, Young 3rd WS. Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol. 2008;84:1–24.

    Article  CAS  PubMed  Google Scholar 

  33. Caldwell HK, Stewart J, Wiedholz LM, Millstein RA, Iacangelo A, Holmes A, Young 3rd WS, Wersinger SR. The acute intoxicating effects of ethanol are not dependent on the vasopressin 1a or 1b receptors. Neuropeptides. 2006;40:325–37.

    Article  CAS  PubMed  Google Scholar 

  34. Caldwell HK, Young 3rd WS. Oxytocin and vasopressin: genetics and behavioral implications. In: Lim R, editor. Neuroactive proteins and peptides, vol. 3. New York: Springer; 2006. p. 573–607.

    Google Scholar 

  35. Catani M, Dell’acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37:1724–37.

    Article  PubMed  Google Scholar 

  36. Chen J, Young S, Subburaju S, Sheppard J, Kiss A, Atkinson H, Wood S, Lightman S, Serradeil-Le Gal C, Aguilera G. Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. Ann N Y Acad Sci. 2008;1148:349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi DC, Evanson NK, Furay AR, Ulrich-Lai YM, Ostrander MM, Herman JP. The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Endocrinology. 2008;149:818–26.

    Article  CAS  PubMed  Google Scholar 

  38. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    Article  CAS  PubMed  Google Scholar 

  39. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.

    Article  CAS  PubMed  Google Scholar 

  40. Cullinan WE, Herman JP, Watson SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol. 1993;332:1–20.

    Article  CAS  PubMed  Google Scholar 

  41. Dallman MF, Akana SF, Levin N, Walker CD, Bradbury MJ, Suemaru S, Scribner KS. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann N Y Acad Sci. 1994;746:22–31; discussion 31–22, 64–27.

    Article  CAS  PubMed  Google Scholar 

  42. De Bellis MD, Gold PW, Geracioti Jr TD, Listwak SJ, Kling MA. Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry. 1993;150:656–7.

    Article  PubMed  Google Scholar 

  43. de Bree FM. Trafficking of the vasopressin and oxytocin prohormone through the regulated secretory pathway. J Neuroendocrinol. 2000;12:589–94.

    Article  PubMed  Google Scholar 

  44. de Goeij DC, Kvetnansky R, Whitnall MH, Jezova D, Berkenbosch F, Tilders FJ. Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology. 1991;53:150–9.

    Article  PubMed  Google Scholar 

  45. de Kloet ER, de Jong IE, Oitzl MS. Neuropharmacology of glucocorticoids: focus on emoion, cognition and cocaine. Eur J Pharmacol. 2008;585:473–82.

    Google Scholar 

  46. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.

    PubMed  Google Scholar 

  47. De Vries GJ, Buijs RM. The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 1983;273:307–17.

    Article  PubMed  Google Scholar 

  48. De Vries GJ, Buijs RM, Swaab DF. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985;233:236–54.

    Article  Google Scholar 

  49. Dempster EL, Burcescu I, Wigg K, Kiss E, Baji I, Gadoros J, Tamas Z, Kennedy JL, Vetro A, Kovacs M, Barr CL. Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch Gen Psychiatry. 2007;64:1189–95.

    Article  CAS  PubMed  Google Scholar 

  50. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–7.

    CAS  PubMed  Google Scholar 

  51. Egashira N, Tanoue A, Matsuda T, Koushi E, Harada S, Takano Y, Tsujimoto G, Mishima K, Iwasaki K, Fujiwara M. Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res. 2007;178:123–7.

    Article  CAS  PubMed  Google Scholar 

  52. Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 2010;151:4811–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology. 2003;144:5249–58.

    Article  CAS  PubMed  Google Scholar 

  54. File SE. The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods. 1980;2:219–38.

    Article  CAS  PubMed  Google Scholar 

  55. File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharmacol. 2003;463:35–53.

    Article  CAS  PubMed  Google Scholar 

  56. Gainer H, Fields RL, House SB. Vasopressin gene expression: experimental models and strategies. Exp Neurol. 2001;171:190–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982;299:355–7.

    Article  CAS  PubMed  Google Scholar 

  58. Gjerris A, Hammer M, Vendsborg P, Christensen NJ, Rafaelsen OJ. Cerebrospinal fluid vasopressin – changes in depression. Br J psychiatry J Ment Sci. 1985;147:696–701.

    Article  CAS  Google Scholar 

  59. Goekoop J, de Winter R, Wolterbeek R, Wiegant V. Support for two increased vasopressinergic activities in depression at large and the differential effect of antidepressant treatment. J Psychopharmacol. 2011;25:1304–12.

    Article  CAS  PubMed  Google Scholar 

  60. Gold PW, Goodwin FK, Reus VI. Vasopressin in affective illness. Lancet. 1978;1:1233–6.

    Article  CAS  PubMed  Google Scholar 

  61. Griebel G, Beeske S, Stahl SM. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry. 2012;73:1403–11.

    Article  CAS  PubMed  Google Scholar 

  62. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A. 2002;99:6370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hara Y, Battey J, Gainer H. Structure of mouse vasopressin and oxytocin genes. Brain Res Mol Brain Res. 1990;8:319–24.

    Article  CAS  PubMed  Google Scholar 

  64. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–80.

    Article  CAS  PubMed  Google Scholar 

  65. Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1201–13.

    Article  CAS  PubMed  Google Scholar 

  66. Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142:1659–68.

    CAS  PubMed  Google Scholar 

  67. Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety. 1998;8:71–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012;36:2085–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav. 2007;86:431–40.

    Article  CAS  PubMed  Google Scholar 

  70. Hodgson RA, Mullins D, Lu SX, Guzzi M, Zhang X, Bleickardt CJ, Scott JD, Miller MW, Stamford AW, Parker EM, Varty GB. Characterization of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like and depression-like behavior. Eur J Pharmacol. 2014; 730:157–63

    Google Scholar 

  71. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1--receptor physiology. Crit Care. 2003;7:427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Iijima M, Chaki S. An arginine vasopressin V1b antagonist, SSR149415 elicits antidepressant-like effects in an olfactory bulbectomy model. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:622–7.

    Article  CAS  Google Scholar 

  73. Iijima M, Yoshimizu T, Shimazaki T, Tokugawa K, Fukumoto K, Kurosu S, Kuwada T, Sekiguchi Y, Chaki S. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325. Br J Pharmacol. 2014;171:3511–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Inder WJ, Donald RA, Prickett TC, Frampton CM, Sullivan PF, Mulder RT, Joyce PR. Arginine vasopressin is associated with hypercortisolemia and suicide attempts in depression. Biol Psychiatry. 1997;42:744–7.

    Article  CAS  PubMed  Google Scholar 

  75. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65:768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jard S, Barberis C, Audigier S, Tribollet E. Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res. 1987;72:173–87.

    Article  CAS  PubMed  Google Scholar 

  77. Juul KV, Bichet DG, Nielsen S, Norgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol. 2014;306:F931–40.

    Article  CAS  PubMed  Google Scholar 

  78. Kato Y, Igarashi N, Hirasawa A, Tsujimoto G, Kobayashi M. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation. 1995;59:163–9.

    Article  CAS  PubMed  Google Scholar 

  79. Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev. 1981;5:247–51.

    Article  CAS  PubMed  Google Scholar 

  80. Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R. Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2003;28:235–43.

    Article  CAS  Google Scholar 

  81. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984;5:1–24.

    Article  CAS  PubMed  Google Scholar 

  82. Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol. 2014;35:512–29.

    Article  CAS  PubMed  Google Scholar 

  83. Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997;74:299–316.

    Article  CAS  PubMed  Google Scholar 

  84. Kiss JZ, Mezey E, Skirboll L. Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci U S A. 1984;81:1854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korosi A, Baram TZ. The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol. 2008;583:204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92:1813–64.

    Article  CAS  PubMed  Google Scholar 

  87. Kovacs KJ, Foldes A, Sawchenko PE. Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons. J Neurosci. 2000;20:3843–52.

    CAS  PubMed  Google Scholar 

  88. Kovacs KJ, Sawchenko PE. Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J Mol Neurosci. 1996;7:125–33.

    Article  CAS  PubMed  Google Scholar 

  89. Lamberts SW, Verleun T, Oosterom R, de Jong F, Hackeng WH. Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocrinol Metab. 1984;58:298–303.

    Article  CAS  PubMed  Google Scholar 

  90. Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F, Engelmann M. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci. 1995;15:4250–8.

    CAS  PubMed  Google Scholar 

  91. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25:150–76.

    Article  CAS  PubMed  Google Scholar 

  92. Landgraf R, Wigger A. High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet. 2002;32:301–14.

    Article  PubMed  Google Scholar 

  93. Landry DW, Oliver JA. Increased complexity of vasopressin’s vascular actions. Crit Care. 2010;14:1011.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol. 1999;57:625–55.

    Article  CAS  PubMed  Google Scholar 

  95. Liebsch G, Wotjak CT, Landgraf R, Engelmann M. Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci Lett. 1996;217:101–4.

    Article  CAS  PubMed  Google Scholar 

  96. Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl). 1987;92:180–5.

    CAS  Google Scholar 

  97. Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young III WS, Mezey E, Brownstein MJ. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A. 1995;92:6783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lolait SJ, Stewart LQ, Jessop DS, Young 3rd WS, O’Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology. 2007;148:849–56.

    Article  CAS  PubMed  Google Scholar 

  99. Lolait SJ, Stewart LQ, Roper JA, Harrison G, Jessop DS, Young 3rd WS, O’Carroll AM. Attenuated stress response to acute lipopolysaccharide challenge and ethanol administration in vasopressin V1b receptor knockout mice. J Neuroendocrinol. 2007;19:543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8:523–32.

    Article  CAS  PubMed  Google Scholar 

  101. Ludwig M, Sabatier N, Dayanithi G, Russell JA, Leng G. The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. Prog Brain Res. 2002;139:247–56.

    Article  CAS  PubMed  Google Scholar 

  102. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  CAS  PubMed  Google Scholar 

  103. Mason WT, Ho YW, Hatton GI. Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience. 1984;11:169–82.

    Article  CAS  PubMed  Google Scholar 

  104. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.

    Article  CAS  PubMed  Google Scholar 

  105. Michell RH, Kirk CJ, Billah MM. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979;7:861–5.

    Article  CAS  PubMed  Google Scholar 

  106. Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D. Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav. 2007;51:395–405.

    Article  CAS  PubMed  Google Scholar 

  107. Mohr E, Schmitz E, Richter D. A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie. 1988;70:649–54.

    Article  CAS  PubMed  Google Scholar 

  108. Moore FL, Lowry CA. Comparative neuroanatomy of vasotocin and vasopressin in amphibians and other vertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;119:251–60.

    Article  CAS  PubMed  Google Scholar 

  109. Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, Quirion R. Role of neuropeptide Y Y(1) and Y(2) receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology. 2012;62:200–8.

    Article  CAS  PubMed  Google Scholar 

  110. Morales-Medina JC, Dumont Y, Quirion R. A possible role of neuropeptide Y in depression and stress. Brain Res. 2010;1314:194–205.

    Article  CAS  PubMed  Google Scholar 

  111. Mouri T, Itoi K, Takahashi K, Suda T, Murakami O, Yoshinaga K, Andoh N, Ohtani H, Masuda T, Sasano N. Colocalization of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology. 1993;57:34–9.

    Article  CAS  PubMed  Google Scholar 

  112. Murgatroyd C, Wigger A, Frank E, Singewald N, Bunck M, Holsboer F, Landgraf R, Spengler D. Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. J Neurosci. 2004;24:7762–70.

    Article  CAS  PubMed  Google Scholar 

  113. Murray CJ, Lopez AD. Evidence-based health policy – lessons from the Global Burden of Disease Study. Science. 1996;274:740–3.

    Article  CAS  PubMed  Google Scholar 

  114. Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012;35:649–59.

    Article  CAS  PubMed  Google Scholar 

  115. Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young 3rd WS. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992;131:533–5.

    CAS  PubMed  Google Scholar 

  116. Ostrowski NL, Lolait SJ, Young 3rd WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology. 1994;135:1511–28.

    CAS  PubMed  Google Scholar 

  117. Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the flinders sensitive line rat. Pharmacol Biochem Behav. 2005;82:223–7.

    Article  CAS  PubMed  Google Scholar 

  118. Palkovits M, Baffi JS, Pacak K. The role of ascending neuronal pathways in stress-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. J Neuroendocrinol. 1999;11:529–39.

    Article  CAS  PubMed  Google Scholar 

  119. Piekut DT, Joseph SA. Co-existence of CRF and vasopressin immunoreactivity in parvocellular paraventricular neurons of rat hypothalamus. Peptides. 1986;7:891–8.

    Article  CAS  PubMed  Google Scholar 

  120. Plotsky PM. Regulation of hypophysiotropic factors mediating ACTH secretion. Ann N Y Acad Sci. 1987;512:205–17.

    Article  CAS  PubMed  Google Scholar 

  121. Plotsky PM, Otto S, Sapolsky RM. Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 1986;119:1126–30.

    Article  CAS  PubMed  Google Scholar 

  122. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.

    Article  CAS  PubMed  Google Scholar 

  123. Postina R, Kojro E, Fahrenholz F. Identification of neurohypophysial hormone receptor domains involved in ligand binding and G protein coupling. Adv Exp Med Biol. 1998;449:371–85.

    Article  CAS  PubMed  Google Scholar 

  124. Qahwash IM, Cassar CA, Radcliff RP, Smith GW. Bacterial lipopolysaccharide-induced coordinate downregulation of arginine vasopressin receptor V3 and corticotropin-releasing factor receptor 1 messenger ribonucleic acids in the anterior pituitary of endotoxemic steers. Endocrine. 2002;18:13–20.

    Article  CAS  PubMed  Google Scholar 

  125. Rabadan-Diehl C, Lolait SJ, Aguilera G. Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. J Neuroendocrinol. 1995;7:903–10.

    Article  CAS  PubMed  Google Scholar 

  126. Raedler TJ, Wiedemann K. CSF-studies in neuropsychiatric disorders. Neuro Endocrinol Lett. 2006;27:297–305.

    CAS  PubMed  Google Scholar 

  127. Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.

    Article  CAS  PubMed  Google Scholar 

  128. Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305:325–7.

    Article  CAS  PubMed  Google Scholar 

  129. Roberts EM, Pope GR, Newson MJ, Lolait SJ, O’Carroll AM. The vasopressin V1b receptor modulates plasma corticosterone responses to dehydration-induced stress. J Neuroendocrinol. 2011;23:12–9.

    Article  CAS  PubMed  Google Scholar 

  130. Rood BD, De Vries GJ. Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol. 2011;519:2434–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roper J, O’Carroll AM, Young 3rd W, Lolait S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress. 2011;14:98–115.

    Article  CAS  PubMed  Google Scholar 

  132. Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW. The limbic system conception and its historical evolution. Sci World J. 2011;11:2428–41.

    Article  Google Scholar 

  133. Saito M, Sugimoto T, Tahara A, Kawashima H. Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun. 1995;212:751–7.

    Article  CAS  PubMed  Google Scholar 

  134. Salome N, Stemmelin J, Cohen C, Griebel G. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology. 2006;187:237–44.

    Article  CAS  PubMed  Google Scholar 

  135. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57:925–35.

    Article  CAS  PubMed  Google Scholar 

  136. Sawchenko PE. Evidence for differential regulation of corticotropin-releasing factor and vasopressin immunoreactivities in parvocellular neurosecretory and autonomic-related projections of the paraventricular nucleus. Brain Res. 1987;437:253–63.

    Article  CAS  PubMed  Google Scholar 

  137. Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci. 1998;62:1985–98.

    Article  CAS  PubMed  Google Scholar 

  138. Shimazaki T, Iijima M, Chaki S.The pituitary mediates the anxiolytic-like effects of the vasopressin V1B receptor antagonist,SSR149415, in a social interaction test in rats. Eur J Pharmacol. 2006;543:63–7

    Google Scholar 

  139. Sofroniew MV. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–14.

    Article  CAS  PubMed  Google Scholar 

  140. Sokol HW, Valtin H. Morphology of the neurosecretory system in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology. 1965;77:692–700.

    Article  CAS  PubMed  Google Scholar 

  141. Stemmelin J, Lukovic L, Salome N, Griebel G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2005;30:35–42.

    Article  CAS  Google Scholar 

  142. Stevenson EL, Caldwell HK. The vasopressin 1b receptor and the neural regulation of social behavior. Horm Behav. 2012;61:277–82.

    Article  CAS  PubMed  Google Scholar 

  143. Szot P, Bale TL, Dorsa DM. Distribution of messenger RNA for the vasopressin V1a receptor in the CNS of male and female rats. Brain Res Mol Brain Res. 1994;24:1–10.

    Article  CAS  PubMed  Google Scholar 

  144. Thibonnier M, Berti-Mattera LN, Dulin N, Conarty DM, Mattera R. Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary vasopressin and oxytocin receptors. Prog Brain Res. 1998;119:147–61.

    Article  CAS  PubMed  Google Scholar 

  145. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R. The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology. 1997;138:4109–22.

    CAS  PubMed  Google Scholar 

  146. Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology. 1998;139:5015–33.

    CAS  PubMed  Google Scholar 

  147. Van de Kar LD, Piechowski RA, Rittenhouse PA, Gray TS. Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinology. 1991;54:89–95.

    PubMed  Google Scholar 

  148. Van Londen L, Goekoop JG, Zwinderman AH, Lanser JB, Wiegant VM, De Wied D. Neuropsychological performance and plasma cortisol, arginine vasopressin and oxytocin in patients with major depression. Psychol Med. 1998;28:275–84.

    Article  PubMed  Google Scholar 

  149. van Londen L, Kerkhof GA, van den Berg F, Goekoop JG, Zwinderman KH, Frankhuijzen-Sierevogel AC, Wiegant VM, de Wied D. Plasma arginine vasopressin and motor activity in major depression. Biol Psychiatry. 1998;43:196–204.

    Article  PubMed  Google Scholar 

  150. van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T, Sluijs S, Bel-Kacem S, Adolfsson R, Mendlewicz J, Van Duijn C, Deboutte D, Van Broeckhoven C, Claes S. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry. 2004;9:287–92.

    Article  CAS  PubMed  Google Scholar 

  151. Veenema AH. Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm Behav. 2012;61:304–12.

    Article  CAS  PubMed  Google Scholar 

  152. Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young 3rd WS. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 2007;6:540–51.

    Article  CAS  PubMed  Google Scholar 

  153. Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young 3rd WS. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry. 2002;7:975–84.

    Article  CAS  PubMed  Google Scholar 

  154. Whitnall MH, Mezey E, Gainer H. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature. 1985;317:248–50.

    Article  CAS  PubMed  Google Scholar 

  155. Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, Landgraf R. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29:1–14.

    Article  CAS  Google Scholar 

  156. Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R. Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci. 1996;16:7725–32.

    CAS  PubMed  Google Scholar 

  157. Young WS, Li J, Wersinger SR, Palkovits M. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience. 2006;143:1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu W, Umegaki H, Suzuki Y, Miura H, Iguchi A. Involvement of the bed nucleus of the stria terminalis in hippocampal cholinergic system-mediated activation of the hypothalamo – pituitary – adrenocortical axis in rats. Brain Res. 2001;916:101–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JCMM acknowledges the CONACyT-Mexico for membership. This work was supported, in part, by NIH R03 MH099456 and NSF IOS353859 awarded to HKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Cesar Morales-Medina PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Morales-Medina, J.C., Witchey, S.K., Caldwell, H.K. (2016). The Role of Vasopressin in Anxiety and Depression. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_40

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics