The Role of Vasopressin in Anxiety and Depression

  • Julio Cesar Morales-Medina
  • Shannah K. Witchey
  • Heather K. Caldwell


The nonapeptide vasopressin (Avp) is an important player in an animal’s response to stress. As an integral part of the hypothalamic-pituitary-adrenal (HPA) axis, Avp has been identified as a potential contributor to stress-related disorders, such as anxiety and depression, as they are characterized by impairments of the HPA axis. Avp mediates its effects through three receptor subtypes: the Avp 1a receptor (Avpr1a), the Avp 1b receptor (Avpr1b), and the Avp 2 receptor (Avpr2). While the Avpr1a and Avpr1b are expressed in the central nervous system, the Avpr2 appears to be restricted to the periphery. In rodents, the Avpr1b has consistently been implicated in the modulation of anxiety- and depression-related behaviors, and these findings are supported by the human literature. In depressed humans, serum concentrations of Avp are abnormally high and polymorphisms of the Avpr1b are associated with resilience to the development of mood disorders. Moreover, recent data suggests that administration of an Avpr1b antagonist can alleviate symptoms of depression and has shed light on the potential clinical relevance of the Avpergic system to anxiety and depression. In this chapter, we review the recent scientific literature from both animal and human studies regarding the contributions of Avp and its receptors to stress, anxiety, and depression.


Force Swim Test Elevated Plus Maze Tail Suspension Test Chronic Mild Stress Lateral Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JCMM acknowledges the CONACyT-Mexico for membership. This work was supported, in part, by NIH R03 MH099456 and NSF IOS353859 awarded to HKC.


  1. 1.
    Acher R, Chauvet J. The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors. Front Neuroendocrinol. 1995;16:237–89.CrossRefPubMedGoogle Scholar
  2. 2.
    Adkins-Regan E. Neuroendocrinology of social behavior. ILAR J. 2009;50:5–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol. 1994;15:321–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Aguilera G, Rabadan-Diehl C. Regulation of vasopressin V1b receptors in the anterior pituitary gland. Exp Physiol. 2000;85:S19–26.CrossRefGoogle Scholar
  5. 5.
    Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept. 2000;96:23–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog Brain Res. 2008;170:29–39.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Albers HE. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Horm Behav. 2012;61:283–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol. 2014;36:49–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I. Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone and vasopressin in rats. Brain Res. 1986;397:297–307.CrossRefPubMedGoogle Scholar
  10. 10.
    Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986;7:351–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol. 1993;14:76–122.CrossRefPubMedGoogle Scholar
  12. 12.
    Antoni FA, Holmes MC, Jones MT. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides. 1983;4:411–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Appenrodt E, Schnabel R, Schwarzberg H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav. 1998;64:543–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Arriza JL, Simerly RB, Swanson LW, Evans RM. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron. 1988;1:887–900.CrossRefPubMedGoogle Scholar
  15. 15.
    Balazsfi D, Pinter O, Klausz B, Kovacs KB, Fodor A, Torok B, Engelmann M, Zelena D. Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology. 2014;51C:11–23.Google Scholar
  16. 16.
    Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51:372–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Barberis C, Tribollet E. Vasopressin and oxytocin receptors in the central nervous system. Crit Rev Neurobiol. 1996;10:119–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Bartanusz V, Jezova D, Bertini LT, Tilders FJ, Aubry JM, Kiss JZ. Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology. 1993;132:895–902.PubMedGoogle Scholar
  19. 19.
    Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron. 2005;47:503–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29:483–93.CrossRefGoogle Scholar
  21. 21.
    Bielsky IF, Hu SB, Young LJ. Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav Brain Res. 2005;164:132–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Birnbaumer M. Vasopressin receptors. Trends Endocrinol Metab. 2000;11:406–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Bleickardt CJ, Mullins DE, Macsweeney CP, Werner BJ, Pond AJ, Guzzi MF, Martin FD, Varty GB, Hodgson RA. Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like behavior. Psychopharmacology. 2009;202:711–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Bourin M, Hascoet M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Bourin M, Petit-Demouliere B, Dhonnchadha BN, Hascoet M. Animal models of anxiety in mice. Fundam Clin Pharmacol. 2007;21:567–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Bowers G, Cullinan WE, Herman JP. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci. 1998;18:5938–47.PubMedGoogle Scholar
  27. 27.
    Breuer ME, van Gaalen MM, Wernet W, Claessens SE, Oosting RS, Behl B, Korte SM, Schoemaker H, Gross G, Olivier B, Groenink L. SSR149415, a non-peptide vasopressin V1b receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedeberg’s Arch Pharmacol. 2009;379:101–6.CrossRefGoogle Scholar
  28. 28.
    Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tiss Res. 1978;192:423–35.CrossRefGoogle Scholar
  29. 29.
    Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001;81:1197–267.PubMedGoogle Scholar
  30. 30.
    Caldwell HK. Neurobiology of sociability. Adv Exp Med Biol. 2012;739:187–205.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Caldwell HK, Dike OE, Stevenson EL, Storck K, Young 3rd WS. Social dominance in male vasopressin 1b receptor knockout mice. Horm Behav. 2010;58:257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Caldwell HK, Lee HJ, Macbeth AH, Young 3rd WS. Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol. 2008;84:1–24.CrossRefPubMedGoogle Scholar
  33. 33.
    Caldwell HK, Stewart J, Wiedholz LM, Millstein RA, Iacangelo A, Holmes A, Young 3rd WS, Wersinger SR. The acute intoxicating effects of ethanol are not dependent on the vasopressin 1a or 1b receptors. Neuropeptides. 2006;40:325–37.CrossRefPubMedGoogle Scholar
  34. 34.
    Caldwell HK, Young 3rd WS. Oxytocin and vasopressin: genetics and behavioral implications. In: Lim R, editor. Neuroactive proteins and peptides, vol. 3. New York: Springer; 2006. p. 573–607.Google Scholar
  35. 35.
    Catani M, Dell’acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37:1724–37.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen J, Young S, Subburaju S, Sheppard J, Kiss A, Atkinson H, Wood S, Lightman S, Serradeil-Le Gal C, Aguilera G. Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. Ann N Y Acad Sci. 2008;1148:349–59.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Choi DC, Evanson NK, Furay AR, Ulrich-Lai YM, Ostrander MM, Herman JP. The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Endocrinology. 2008;149:818–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.CrossRefPubMedGoogle Scholar
  39. 39.
    Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.CrossRefPubMedGoogle Scholar
  40. 40.
    Cullinan WE, Herman JP, Watson SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol. 1993;332:1–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Dallman MF, Akana SF, Levin N, Walker CD, Bradbury MJ, Suemaru S, Scribner KS. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann N Y Acad Sci. 1994;746:22–31; discussion 31–22, 64–27.CrossRefPubMedGoogle Scholar
  42. 42.
    De Bellis MD, Gold PW, Geracioti Jr TD, Listwak SJ, Kling MA. Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry. 1993;150:656–7.CrossRefPubMedGoogle Scholar
  43. 43.
    de Bree FM. Trafficking of the vasopressin and oxytocin prohormone through the regulated secretory pathway. J Neuroendocrinol. 2000;12:589–94.CrossRefPubMedGoogle Scholar
  44. 44.
    de Goeij DC, Kvetnansky R, Whitnall MH, Jezova D, Berkenbosch F, Tilders FJ. Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology. 1991;53:150–9.CrossRefPubMedGoogle Scholar
  45. 45.
    de Kloet ER, de Jong IE, Oitzl MS. Neuropharmacology of glucocorticoids: focus on emoion, cognition and cocaine. Eur J Pharmacol. 2008;585:473–82.Google Scholar
  46. 46.
    De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.PubMedGoogle Scholar
  47. 47.
    De Vries GJ, Buijs RM. The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 1983;273:307–17.CrossRefPubMedGoogle Scholar
  48. 48.
    De Vries GJ, Buijs RM, Swaab DF. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985;233:236–54.CrossRefGoogle Scholar
  49. 49.
    Dempster EL, Burcescu I, Wigg K, Kiss E, Baji I, Gadoros J, Tamas Z, Kennedy JL, Vetro A, Kovacs M, Barr CL. Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch Gen Psychiatry. 2007;64:1189–95.CrossRefPubMedGoogle Scholar
  50. 50.
    Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–7.PubMedGoogle Scholar
  51. 51.
    Egashira N, Tanoue A, Matsuda T, Koushi E, Harada S, Takano Y, Tsujimoto G, Mishima K, Iwasaki K, Fujiwara M. Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res. 2007;178:123–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 2010;151:4811–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology. 2003;144:5249–58.CrossRefPubMedGoogle Scholar
  54. 54.
    File SE. The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods. 1980;2:219–38.CrossRefPubMedGoogle Scholar
  55. 55.
    File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharmacol. 2003;463:35–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Gainer H, Fields RL, House SB. Vasopressin gene expression: experimental models and strategies. Exp Neurol. 2001;171:190–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982;299:355–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Gjerris A, Hammer M, Vendsborg P, Christensen NJ, Rafaelsen OJ. Cerebrospinal fluid vasopressin – changes in depression. Br J psychiatry J Ment Sci. 1985;147:696–701.CrossRefGoogle Scholar
  59. 59.
    Goekoop J, de Winter R, Wolterbeek R, Wiegant V. Support for two increased vasopressinergic activities in depression at large and the differential effect of antidepressant treatment. J Psychopharmacol. 2011;25:1304–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Gold PW, Goodwin FK, Reus VI. Vasopressin in affective illness. Lancet. 1978;1:1233–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Griebel G, Beeske S, Stahl SM. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry. 2012;73:1403–11.CrossRefPubMedGoogle Scholar
  62. 62.
    Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A. 2002;99:6370–5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hara Y, Battey J, Gainer H. Structure of mouse vasopressin and oxytocin genes. Brain Res Mol Brain Res. 1990;8:319–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–80.CrossRefPubMedGoogle Scholar
  65. 65.
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1201–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142:1659–68.PubMedGoogle Scholar
  67. 67.
    Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety. 1998;8:71–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012;36:2085–117.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav. 2007;86:431–40.CrossRefPubMedGoogle Scholar
  70. 70.
    Hodgson RA, Mullins D, Lu SX, Guzzi M, Zhang X, Bleickardt CJ, Scott JD, Miller MW, Stamford AW, Parker EM, Varty GB. Characterization of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like and depression-like behavior. Eur J Pharmacol. 2014; 730:157–63Google Scholar
  71. 71.
    Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1--receptor physiology. Crit Care. 2003;7:427–34.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Iijima M, Chaki S. An arginine vasopressin V1b antagonist, SSR149415 elicits antidepressant-like effects in an olfactory bulbectomy model. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:622–7.CrossRefGoogle Scholar
  73. 73.
    Iijima M, Yoshimizu T, Shimazaki T, Tokugawa K, Fukumoto K, Kurosu S, Kuwada T, Sekiguchi Y, Chaki S. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325. Br J Pharmacol. 2014;171:3511–25.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Inder WJ, Donald RA, Prickett TC, Frampton CM, Sullivan PF, Mulder RT, Joyce PR. Arginine vasopressin is associated with hypercortisolemia and suicide attempts in depression. Biol Psychiatry. 1997;42:744–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65:768–79.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jard S, Barberis C, Audigier S, Tribollet E. Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res. 1987;72:173–87.CrossRefPubMedGoogle Scholar
  77. 77.
    Juul KV, Bichet DG, Nielsen S, Norgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol. 2014;306:F931–40.CrossRefPubMedGoogle Scholar
  78. 78.
    Kato Y, Igarashi N, Hirasawa A, Tsujimoto G, Kobayashi M. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation. 1995;59:163–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev. 1981;5:247–51.CrossRefPubMedGoogle Scholar
  80. 80.
    Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R. Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2003;28:235–43.CrossRefGoogle Scholar
  81. 81.
    Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984;5:1–24.CrossRefPubMedGoogle Scholar
  82. 82.
    Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol. 2014;35:512–29.CrossRefPubMedGoogle Scholar
  83. 83.
    Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997;74:299–316.CrossRefPubMedGoogle Scholar
  84. 84.
    Kiss JZ, Mezey E, Skirboll L. Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci U S A. 1984;81:1854–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Korosi A, Baram TZ. The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol. 2008;583:204–14.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92:1813–64.CrossRefPubMedGoogle Scholar
  87. 87.
    Kovacs KJ, Foldes A, Sawchenko PE. Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons. J Neurosci. 2000;20:3843–52.PubMedGoogle Scholar
  88. 88.
    Kovacs KJ, Sawchenko PE. Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J Mol Neurosci. 1996;7:125–33.CrossRefPubMedGoogle Scholar
  89. 89.
    Lamberts SW, Verleun T, Oosterom R, de Jong F, Hackeng WH. Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocrinol Metab. 1984;58:298–303.CrossRefPubMedGoogle Scholar
  90. 90.
    Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F, Engelmann M. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci. 1995;15:4250–8.PubMedGoogle Scholar
  91. 91.
    Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25:150–76.CrossRefPubMedGoogle Scholar
  92. 92.
    Landgraf R, Wigger A. High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet. 2002;32:301–14.CrossRefPubMedGoogle Scholar
  93. 93.
    Landry DW, Oliver JA. Increased complexity of vasopressin’s vascular actions. Crit Care. 2010;14:1011.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol. 1999;57:625–55.CrossRefPubMedGoogle Scholar
  95. 95.
    Liebsch G, Wotjak CT, Landgraf R, Engelmann M. Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci Lett. 1996;217:101–4.CrossRefPubMedGoogle Scholar
  96. 96.
    Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl). 1987;92:180–5.Google Scholar
  97. 97.
    Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young III WS, Mezey E, Brownstein MJ. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A. 1995;92:6783–7.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Lolait SJ, Stewart LQ, Jessop DS, Young 3rd WS, O’Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology. 2007;148:849–56.CrossRefPubMedGoogle Scholar
  99. 99.
    Lolait SJ, Stewart LQ, Roper JA, Harrison G, Jessop DS, Young 3rd WS, O’Carroll AM. Attenuated stress response to acute lipopolysaccharide challenge and ethanol administration in vasopressin V1b receptor knockout mice. J Neuroendocrinol. 2007;19:543–51.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8:523–32.CrossRefPubMedGoogle Scholar
  101. 101.
    Ludwig M, Sabatier N, Dayanithi G, Russell JA, Leng G. The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. Prog Brain Res. 2002;139:247–56.CrossRefPubMedGoogle Scholar
  102. 102.
    Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.CrossRefPubMedGoogle Scholar
  103. 103.
    Mason WT, Ho YW, Hatton GI. Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience. 1984;11:169–82.CrossRefPubMedGoogle Scholar
  104. 104.
    McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.CrossRefPubMedGoogle Scholar
  105. 105.
    Michell RH, Kirk CJ, Billah MM. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979;7:861–5.CrossRefPubMedGoogle Scholar
  106. 106.
    Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D. Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav. 2007;51:395–405.CrossRefPubMedGoogle Scholar
  107. 107.
    Mohr E, Schmitz E, Richter D. A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie. 1988;70:649–54.CrossRefPubMedGoogle Scholar
  108. 108.
    Moore FL, Lowry CA. Comparative neuroanatomy of vasotocin and vasopressin in amphibians and other vertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;119:251–60.CrossRefPubMedGoogle Scholar
  109. 109.
    Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, Quirion R. Role of neuropeptide Y Y(1) and Y(2) receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology. 2012;62:200–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Morales-Medina JC, Dumont Y, Quirion R. A possible role of neuropeptide Y in depression and stress. Brain Res. 2010;1314:194–205.CrossRefPubMedGoogle Scholar
  111. 111.
    Mouri T, Itoi K, Takahashi K, Suda T, Murakami O, Yoshinaga K, Andoh N, Ohtani H, Masuda T, Sasano N. Colocalization of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology. 1993;57:34–9.CrossRefPubMedGoogle Scholar
  112. 112.
    Murgatroyd C, Wigger A, Frank E, Singewald N, Bunck M, Holsboer F, Landgraf R, Spengler D. Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. J Neurosci. 2004;24:7762–70.CrossRefPubMedGoogle Scholar
  113. 113.
    Murray CJ, Lopez AD. Evidence-based health policy – lessons from the Global Burden of Disease Study. Science. 1996;274:740–3.CrossRefPubMedGoogle Scholar
  114. 114.
    Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012;35:649–59.CrossRefPubMedGoogle Scholar
  115. 115.
    Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young 3rd WS. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992;131:533–5.PubMedGoogle Scholar
  116. 116.
    Ostrowski NL, Lolait SJ, Young 3rd WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology. 1994;135:1511–28.PubMedGoogle Scholar
  117. 117.
    Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the flinders sensitive line rat. Pharmacol Biochem Behav. 2005;82:223–7.CrossRefPubMedGoogle Scholar
  118. 118.
    Palkovits M, Baffi JS, Pacak K. The role of ascending neuronal pathways in stress-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. J Neuroendocrinol. 1999;11:529–39.CrossRefPubMedGoogle Scholar
  119. 119.
    Piekut DT, Joseph SA. Co-existence of CRF and vasopressin immunoreactivity in parvocellular paraventricular neurons of rat hypothalamus. Peptides. 1986;7:891–8.CrossRefPubMedGoogle Scholar
  120. 120.
    Plotsky PM. Regulation of hypophysiotropic factors mediating ACTH secretion. Ann N Y Acad Sci. 1987;512:205–17.CrossRefPubMedGoogle Scholar
  121. 121.
    Plotsky PM, Otto S, Sapolsky RM. Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 1986;119:1126–30.CrossRefPubMedGoogle Scholar
  122. 122.
    Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.CrossRefPubMedGoogle Scholar
  123. 123.
    Postina R, Kojro E, Fahrenholz F. Identification of neurohypophysial hormone receptor domains involved in ligand binding and G protein coupling. Adv Exp Med Biol. 1998;449:371–85.CrossRefPubMedGoogle Scholar
  124. 124.
    Qahwash IM, Cassar CA, Radcliff RP, Smith GW. Bacterial lipopolysaccharide-induced coordinate downregulation of arginine vasopressin receptor V3 and corticotropin-releasing factor receptor 1 messenger ribonucleic acids in the anterior pituitary of endotoxemic steers. Endocrine. 2002;18:13–20.CrossRefPubMedGoogle Scholar
  125. 125.
    Rabadan-Diehl C, Lolait SJ, Aguilera G. Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. J Neuroendocrinol. 1995;7:903–10.CrossRefPubMedGoogle Scholar
  126. 126.
    Raedler TJ, Wiedemann K. CSF-studies in neuropsychiatric disorders. Neuro Endocrinol Lett. 2006;27:297–305.PubMedGoogle Scholar
  127. 127.
    Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.CrossRefPubMedGoogle Scholar
  128. 128.
    Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305:325–7.CrossRefPubMedGoogle Scholar
  129. 129.
    Roberts EM, Pope GR, Newson MJ, Lolait SJ, O’Carroll AM. The vasopressin V1b receptor modulates plasma corticosterone responses to dehydration-induced stress. J Neuroendocrinol. 2011;23:12–9.CrossRefPubMedGoogle Scholar
  130. 130.
    Rood BD, De Vries GJ. Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol. 2011;519:2434–74.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Roper J, O’Carroll AM, Young 3rd W, Lolait S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress. 2011;14:98–115.CrossRefPubMedGoogle Scholar
  132. 132.
    Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW. The limbic system conception and its historical evolution. Sci World J. 2011;11:2428–41.CrossRefGoogle Scholar
  133. 133.
    Saito M, Sugimoto T, Tahara A, Kawashima H. Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun. 1995;212:751–7.CrossRefPubMedGoogle Scholar
  134. 134.
    Salome N, Stemmelin J, Cohen C, Griebel G. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology. 2006;187:237–44.CrossRefPubMedGoogle Scholar
  135. 135.
    Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57:925–35.CrossRefPubMedGoogle Scholar
  136. 136.
    Sawchenko PE. Evidence for differential regulation of corticotropin-releasing factor and vasopressin immunoreactivities in parvocellular neurosecretory and autonomic-related projections of the paraventricular nucleus. Brain Res. 1987;437:253–63.CrossRefPubMedGoogle Scholar
  137. 137.
    Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci. 1998;62:1985–98.CrossRefPubMedGoogle Scholar
  138. 138.
    Shimazaki T, Iijima M, Chaki S.The pituitary mediates the anxiolytic-like effects of the vasopressin V1B receptor antagonist,SSR149415, in a social interaction test in rats. Eur J Pharmacol. 2006;543:63–7Google Scholar
  139. 139.
    Sofroniew MV. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–14.CrossRefPubMedGoogle Scholar
  140. 140.
    Sokol HW, Valtin H. Morphology of the neurosecretory system in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology. 1965;77:692–700.CrossRefPubMedGoogle Scholar
  141. 141.
    Stemmelin J, Lukovic L, Salome N, Griebel G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2005;30:35–42.CrossRefGoogle Scholar
  142. 142.
    Stevenson EL, Caldwell HK. The vasopressin 1b receptor and the neural regulation of social behavior. Horm Behav. 2012;61:277–82.CrossRefPubMedGoogle Scholar
  143. 143.
    Szot P, Bale TL, Dorsa DM. Distribution of messenger RNA for the vasopressin V1a receptor in the CNS of male and female rats. Brain Res Mol Brain Res. 1994;24:1–10.CrossRefPubMedGoogle Scholar
  144. 144.
    Thibonnier M, Berti-Mattera LN, Dulin N, Conarty DM, Mattera R. Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary vasopressin and oxytocin receptors. Prog Brain Res. 1998;119:147–61.CrossRefPubMedGoogle Scholar
  145. 145.
    Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R. The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology. 1997;138:4109–22.PubMedGoogle Scholar
  146. 146.
    Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology. 1998;139:5015–33.PubMedGoogle Scholar
  147. 147.
    Van de Kar LD, Piechowski RA, Rittenhouse PA, Gray TS. Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinology. 1991;54:89–95.PubMedGoogle Scholar
  148. 148.
    Van Londen L, Goekoop JG, Zwinderman AH, Lanser JB, Wiegant VM, De Wied D. Neuropsychological performance and plasma cortisol, arginine vasopressin and oxytocin in patients with major depression. Psychol Med. 1998;28:275–84.CrossRefPubMedGoogle Scholar
  149. 149.
    van Londen L, Kerkhof GA, van den Berg F, Goekoop JG, Zwinderman KH, Frankhuijzen-Sierevogel AC, Wiegant VM, de Wied D. Plasma arginine vasopressin and motor activity in major depression. Biol Psychiatry. 1998;43:196–204.CrossRefPubMedGoogle Scholar
  150. 150.
    van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T, Sluijs S, Bel-Kacem S, Adolfsson R, Mendlewicz J, Van Duijn C, Deboutte D, Van Broeckhoven C, Claes S. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry. 2004;9:287–92.CrossRefPubMedGoogle Scholar
  151. 151.
    Veenema AH. Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm Behav. 2012;61:304–12.CrossRefPubMedGoogle Scholar
  152. 152.
    Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young 3rd WS. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 2007;6:540–51.CrossRefPubMedGoogle Scholar
  153. 153.
    Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young 3rd WS. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry. 2002;7:975–84.CrossRefPubMedGoogle Scholar
  154. 154.
    Whitnall MH, Mezey E, Gainer H. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature. 1985;317:248–50.CrossRefPubMedGoogle Scholar
  155. 155.
    Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, Landgraf R. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29:1–14.CrossRefGoogle Scholar
  156. 156.
    Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R. Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci. 1996;16:7725–32.PubMedGoogle Scholar
  157. 157.
    Young WS, Li J, Wersinger SR, Palkovits M. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience. 2006;143:1031–9.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Zhu W, Umegaki H, Suzuki Y, Miura H, Iguchi A. Involvement of the bed nucleus of the stria terminalis in hippocampal cholinergic system-mediated activation of the hypothalamo – pituitary – adrenocortical axis in rats. Brain Res. 2001;916:101–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Julio Cesar Morales-Medina
    • 1
  • Shannah K. Witchey
    • 2
  • Heather K. Caldwell
    • 2
    • 3
  1. 1.Research Center for Animal ReproductionCINVESTAV-Universidad AutónomaTlaxcalaMéxico
  2. 2.Laboratory of Neuroendocrinology and Behavior, Department of Biological SciencesKent State UniversityKentUSA
  3. 3.School of Biomedical SciencesKent State UniversityKentUSA

Personalised recommendations