Advertisement

Melatonin: Basic and Clinical Aspects

  • Agata Carpentieri
  • Vanessa Areco
  • Gabriela Díaz de Barboza
  • María Angélica Rivoira
  • Solange Guizzardi
  • Nori Tolosa de Talamoni
Chapter

Abstract

Melatonin (MEL), the “hormone of darkness,” is an indolamine mainly secreted at night by the pineal gland. It is also synthesized by other tissues, being the enterochromaffin cells the most important extrapineal sites. The ubiquity, pleiotropy, and complexity are the three terms that summarize the properties and actions of MEL. Two well-characterized enzymes participate in its synthesis: N-acetyltransferase, the first-rate limiting enzyme in MEL production, which converts serotonin to N-acetylserotonin (NAS), and hydroxyindole-O-methyltransferase, which converts NAS to MEL. Most of the MEL’s actions are mediated by membrane (MT1 and MT2) and nuclear (ROR/RZR) receptors. However, some MEL effects seem to be independent of the involvement of receptors or related to Ca2+-binding proteins. The signal transduction pathways triggered by MEL involve the AC/cAMP/PKA/CREB, phospholipase C (PLC)-β and PLC-η, and Rafs/MEK1/2/ERK1/2 cascades. MEL participates in the circadian rhythms, the modulation of season changes, in reproduction, as well as an antioxidant, antiapoptotic, anti-inflammatory, oncostatic, and anticonvulsant drug. Exogenous MEL is employed in a number of physiopathological conditions, mainly for the treatment of sleep disorders and jet lag. The antioxidant properties of MEL have been proven to be beneficial to patients with rheumatoid arthritis, females with infertility, elderly patients with primary essential hypertension, and multiple sclerosis patients. The spectrum of the uses of MEL seems to be wide, although more investigation is needed in order to know better the molecular mechanisms and the possible side effects.

Keywords

Irritable Bowel Syndrome Pineal Gland Alzheimer Disease Mouse Zinc Double Finger Extrapineal Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dr. Nori T. de Talamoni and Carpentieri A. are members of career from CONICET. Areco V. is recipient of a fellowship from the Instituto Nacional del Cancer.

Grants

This work was supported by grants from CONICET [PIP 2013–2015] and SECYT (UNC) (Dr. Nori T. de Talamoni).

References

  1. 1.
    Marseglia L, D’Angelo G, Manti S, Aversa S, Arrigo T, Reiter RJ, Gitto E. Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci. 2015;16:1209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hardeland R, Poeggeler B. Melatonin beyond its classical functions. Open Physiol J. 2008;1:1–22.CrossRefGoogle Scholar
  3. 3.
    Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J. 2006;273:2813–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Gitto E, Marseglia L, Manti S, D’Angelo G, Barberi I, Salpietro C, Reiter RJ. Protective role of melatonin in neonatal diseases. Oxid Med Cell Longev. 2013;2013:980374.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Carpentieri A, Marchionatti A, Areco V, Perez A, Centeno V, Nori Tolosa de Talamoni. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione. Mol Cell Biochem. 2014;387:197–205.CrossRefPubMedGoogle Scholar
  6. 6.
    Carpentieri A, Díaz de Barboza G, Areco V, Peralta López M, Nori Tolosa de Talamoni. New perspectives in melatonin uses. Pharmacol Res. 2012;65:437–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Peres MF, Zukerman E, da Cunha Tanuri F, Moreira FR, Cipolla-Neto J. Melatonin, 3 mg, is effective for migraine prevention. Neurology. 2004;63:757.CrossRefPubMedGoogle Scholar
  8. 8.
    Mozaffari S, Rahimi R, Abdollahi M. Implications of melatonin therapy in irritable bowel syndrome: a systematic review. Curr Pharm Des. 2010;16:3646–55.CrossRefPubMedGoogle Scholar
  9. 9.
    Mattam U, Jagota A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology. 2015;16:109–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Konturek SJ, Konturek PC, Brzozowski T, Bubenik GA. Role of melatonin in upper gastrointestinal tract. J Physiol Pharmacol. 2007;58:23–52.PubMedGoogle Scholar
  11. 11.
    Dziegiel P, Podhorska-Okolow M, Zabel M. Melatonin: adjuvant therapy of malignant tumors. Med Sci Monit. 2008;14:RA64–70.PubMedGoogle Scholar
  12. 12.
    Klein DC. Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem. 2007;282:4233–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Hardeland R. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists. Neuropsychiatr Dis Treat. 2009;5:341–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schippers KJ, Nichols SA. Deep, dark secrets of melatonin in animal evolution. Cell. 2014;159:9–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Itoh MT, Takahashi N, Abe M, Shimizu K. Expression and cellular localization of melatonin-synthesizing enzymes in the rat lens. J Pineal Res. 2007;42:92–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu YJ, Zhuang J, Zhu HY, Shen YX, Tan ZL, Zhou JN. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J Pineal Res. 2007;43:232–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 2008;45:50–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Slominski AT, Kleszczyński K, Semak I, Janjetovic Z, Zmijewski MA, Kim TK, Slominski RM, Reiter RJ, Fischer TW. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci. 2014;15:17705–32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stefulj J, Hörtner M, Ghosh M, Schauenstein K, Rinner I, Wölfler A, Semmler J, Liebmann PM. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30:243–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Sakaguchi K, Itoh MT, Takahashi N. The rat oocyte synthesises melatonin. Reprod Fertil Dev. 2013;25:674–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Bubenik GA. Gastrointestinal melatonin: localization, function and clinical relevance. Dig Dis Sci. 2002;47:2336–48.CrossRefPubMedGoogle Scholar
  22. 22.
    Poon AM, Chow PH, Mak AS, Pang SF. Autoradiographic localization of 2[125I]iodomelatonin binding sites in the gastrointestinal tract of mammals including humans and birds. J Pineal Res. 1997;23:5–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Bubenik GA, Brown GM. Pinealectomy reduces melatonin levels in the serum but not in the gastrointestinal tract of rats. Biol Signals. 1997;6:40–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen CQ, Fichna J, Bashashati M, Li YY, Storr M. Distribution, function and physiological role of melatonin in the lower gut. World J Gastroenterol. 2011;17:3888–98.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bubenik GA. Localization of melatonin in the digestive tract of the rat. Effect of maturation, diurnal variation, melatonin treatment and pinealectomy. Horm Res. 1980;12:313–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Fischer TW, Sweatman TW, Semak I, Sayre RM, Wortsman J, Slominski A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 2006;20:1564–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Cardinali DP, Lynch HJ, Wurtman RJ. Binding of melatonin to human and rat plasma proteins. Endocrinology. 1972;91:1213–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351:152–66.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, Cardinali DP. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85:335–53.CrossRefPubMedGoogle Scholar
  31. 31.
    Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P, Jockers R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25:3012–23.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F. Melatonin signaling and cell protection function. FASEB J. 2010;24:3603–24.CrossRefPubMedGoogle Scholar
  33. 33.
    Chan KH, Wong YH. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci. 2013;14:18385–406.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nosjean O, Nicolas JP, Klupsch F, Delagrange P, Canet E, Boutin JA. Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem Pharmacol. 2001;61:1369–79.CrossRefPubMedGoogle Scholar
  35. 35.
    Ferry G, Hecht S, Berger S, Moulharat N, Coge F, Guillaumet G, Leclerc V, Yous S, Delagrange P, Boutin JA. Old and new inhibitors of quinone reductase 2. Chem Biol Interact. 2010;186:103–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Smirnov AN. Nuclear melatonin receptors. Biochemistry (Mosc). 2001;66:19–26.CrossRefGoogle Scholar
  37. 37.
    Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009;35:183–92.CrossRefPubMedGoogle Scholar
  38. 38.
    Fustin JM, Dardente H, Wagner GC, Carter DA, Johnston JD, Lincoln GA, Hazlerigg DG. Egr1 involvement in evening gene regulation by melatonin. FASEB J. 2009;23:764–73.CrossRefPubMedGoogle Scholar
  39. 39.
    Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, Papa S. ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med. 2009;46:339–51.CrossRefPubMedGoogle Scholar
  40. 40.
    Chan AS, Lai FP, Lo RK, Voyno-Yasenetskaya TA, Stanbridge EJ, Wong YH. Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal. 2002;14:249–57.CrossRefPubMedGoogle Scholar
  41. 41.
    Hernández-Pacheco A, Araiza-Saldaña CI, Granados-Soto V, Mixcoatl-Zecuatl T. Possible participation of the nitric oxide-cyclic GMP-protein kinase G-K+ channels pathway in the peripheral antinociception of melatonin. Eur J Pharmacol. 2008;596:70–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Boutin JA, Marcheteau E, Hennig P, Moulharat N, Berger S, Delagrange P, Bouchet JP, Ferry G. MT3/QR2 melatonin binding site does not use melatonin as a substrate or a co-substrate. J Pineal Res. 2008;45:524–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Huerto Delgadillo L, Antón-Tay F, Benítez-King G. Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist. J Pineal Res. 1994;17:55–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP. Scaffold proteins of MAP-kinase modules. Oncogene. 2007;26:3185–202.CrossRefPubMedGoogle Scholar
  45. 45.
    Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A, Tarzia G, Aquilano K, Ciriolo M, Ghibelli L. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol. 2009;239:35–45.CrossRefGoogle Scholar
  46. 46.
    Macías M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A, Acuña-Castroviejo D. Calreticulin-melatonin. An unexpected relationship. Eur J Biochem. 2003;270:832–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Matés JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol. 2008;82:273–99.CrossRefPubMedGoogle Scholar
  48. 48.
    Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM. Role of melatonin in embryo fetal development. J Med Life. 2014;7:488–92.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Kivelä A, Kauppila A, Leppäluoto J, Vakkuri O. Serum and amniotic fluid melatonin during human labor. J Clin Endocrinol Metab. 1989;69:1065–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Serón-Ferré M, Torres-Farfán C, Forcelledo ML, Valenzuela GJ. The development of circadian rhythms in the fetus and neonate. Semin Perinatol. 2001;25:363–70.CrossRefPubMedGoogle Scholar
  51. 51.
    Arendt J. Melatonin and human rhythms. Chronobiol Int. 2006;23:21–37.CrossRefPubMedGoogle Scholar
  52. 52.
    Zawilska JB, Skene DJ, Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep. 2009;61:383–410.CrossRefPubMedGoogle Scholar
  53. 53.
    van Geijlswijk IM, Mol RH, Egberts TC, Smits MG. Evaluation of sleep, puberty and mental health in children with long-term melatonin treatment for chronic idiopathic childhood sleep onset insomnia. Psychopharmacology (Berl). 2011;216:111–20.CrossRefGoogle Scholar
  54. 54.
    Eckerberg B, Lowden A, Nagai R, Akerstedt T. Melatonin treatment effects on adolescent students’ sleep timing and sleepiness in a placebo-controlled crossover study. Chronobiol Int. 2012;29:1239–48.CrossRefPubMedGoogle Scholar
  55. 55.
    Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, Zisapel N. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Curr Med Res Opin. 2007;23:2597–605.CrossRefPubMedGoogle Scholar
  56. 56.
    Lemoine P, Nir T, Laudon M, Zisapel N. Prolonged release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res. 2007;16:372–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Peck JS, LeGoff DB, Ahmed I, Goebert D. Cognitive effects of exogenous melatonin administration in elderly persons: a pilot study. Am J Geriatr Psychiatry. 2004;12:432–6.PubMedGoogle Scholar
  58. 58.
    Luthringer R, Muzet M, Zisapel N, Staner L. The effect of prolonged-release melatonin on sleep measures and psychomotor performance in elderly patients with insomnia. Int Clin Psychopharmacol. 2009;24:239–49.CrossRefPubMedGoogle Scholar
  59. 59.
    Otmani S, Demazières A, Staner C, Jacob N, Nir T, Zisapel N, Staner L. Effects of prolonged-release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum Psychopharmacol. 2008;23:693–705.CrossRefPubMedGoogle Scholar
  60. 60.
    Rechciński T, Uznańska-Loch B, Trzos E, Wierzbowska-Drabik K, Krzemińska-Pakuła M, Kasprzak JD, Kurpesa M. Melatonin – a somniferous option which does not aggravate sleep-disordered breathing in cardiac risk patients: a Holter ECG based study. Kardiol Pol. 2012;70:24–9.PubMedGoogle Scholar
  61. 61.
    Nunes DM, Mota RM, Machado MO, Pereira ED, Bruin VM, Bruin PF. Effect of melatonin administration on subjective sleep quality in chronic obstructive pulmonary disease. Braz J Med Biol Res. 2008;41:926–31.PubMedGoogle Scholar
  62. 62.
    Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res. 2008;44:205–13.CrossRefPubMedGoogle Scholar
  63. 63.
    Huang HW, Zheng BL, Jiang L, Lin ZT, Zhang GB, Shen L, Xi XM. Effect of oral melatonin and wearing earplugs and eye masks on nocturnal sleep in healthy subjects in a simulated intensive care unit environment: which might be a more promising strategy for ICU sleep deprivation? Crit Care. 2015;19:124.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gandhi AV, Mosser EA, Oikonomou G, Prober DA. Melatonin is required for the circadian regulation of sleep. Neuron. 2015;18:1193–9.CrossRefGoogle Scholar
  65. 65.
    Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC. The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol. 2010;8:182–93.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Srinivasan V, Lauterbach EC, Ho KY, Acuña-Castroviejo D, Zakaria R, Brzezinski A. Melatonin in antinociception: its therapeutic applications. Curr Neuropharamacol. 2012;10:167–78.CrossRefGoogle Scholar
  67. 67.
    Abou-Khadra MK, Kishk NA, Shaker OG, Hassan A. Urinary 6-sulphatoxymelatonin levels and sleep disorders in children with migraine. J Child Neurol. 2014;29:947–51.CrossRefPubMedGoogle Scholar
  68. 68.
    Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol. 2008;17:713–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Tian YF, Lin CH, Hsu SF, Lin MT. Melatonin improves outcomes of heatstroke in mice by reducing brain inflammation and oxidative damage and multiple organ dysfunction. Mediators Inflamm. 2013;2013:349280.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res. 2012;52:167–202.CrossRefPubMedGoogle Scholar
  71. 71.
    Belforte NA, Moreno MC, de Zavalía N, Sande PH, Chianelli MS, Keller Sarmiento MI, Rosenstein RE. Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res. 2010;48:353–64.CrossRefPubMedGoogle Scholar
  72. 72.
    Popov SS, Shulgin KK, Popova TN, Pashkov AN, Agarkov AA, de Carvalho MA. Effects of melatoninaided therapy on the glutathione antioxidant system activity and liver protection. J Biochem Mol Toxicol. 2015;29:449–57.Google Scholar
  73. 73.
    Nakao T, Morita H, Maemura K, Amiya E, Inajima T, Saito Y, Watanabe M, Manabe I, Kurabayashi M, Nagai R, Komuro I. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties. J Pineal Res. 2013;55:287–93.CrossRefPubMedGoogle Scholar
  74. 74.
    Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64:517–26.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, Taketani T, Matsuoka A, Yamagata Y, Shimamura K, Morioka H, Ishikawa H, Reiter RJ, Sugino N. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Kedziora-Kornatowska K, Szewczyk-Golec K, Czuczejko J, Pawluk H, van MarkedeLumen K, Kozakiewicz M, Bartosz G, Kedziora J. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J Pineal Res. 2008;45:312–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Adamczyk-Sowa M, Pierzchala K, Sowa P, Polaniak R, Kukla M, Hartel M. Influence of melatonin supplementation on serum antioxidative properties and impact of the quality of life in multiple sclerosis patients. J Physiol Pharmacol. 2014;65:543–50.PubMedGoogle Scholar
  78. 78.
    Mathes AM. Hepatoprotective actions of melatonin: possible mediation by melatonin receptors. World J Gastroenterol. 2010;16:6087–97.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Agil A, El-Hammadi M, Jiménez-Aranda A, Tassi M, Abdo W, Fernández-Vázquez G, Reiter RJ. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J Pineal Res. 2015;59:70–9.Google Scholar
  80. 80.
    Ram PT, Dai J, Yuan L, Dong C, Kiefer TL, Lai L, Hill SM. Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett. 2002;179:141–50.CrossRefPubMedGoogle Scholar
  81. 81.
    Trivedi PP, Jena GB, Tikoo KB, Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog. 2016;55:255–67.Google Scholar
  82. 82.
    Wei JY, Li WM, Zhou LL, Lu QN, He W. Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res. 2015;58:429–38.CrossRefPubMedGoogle Scholar
  83. 83.
    Laothong U, Hiraku Y, Oikawa S, Intuyod K, Murata M, Pinlaor S. Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway. Oncol Rep. 2015;33:1443–9.PubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Agata Carpentieri
    • 1
    • 2
  • Vanessa Areco
    • 1
  • Gabriela Díaz de Barboza
    • 1
  • María Angélica Rivoira
    • 1
  • Solange Guizzardi
    • 1
  • Nori Tolosa de Talamoni
    • 1
  1. 1.“Dr. Cañas” Laboratory, Biochemistry and Molecular Biology, Faculty of Medical SciencesUniversidad Nacional de Córdoba, INICSA (CONICET-UNC)CórdobaArgentina
  2. 2.Biological Chemistry, Faculty of DentistryUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations