Advertisement

Depression: Correlations with Thyroid Hormones in Major Depressive Disorder

  • Dominika Berent
Chapter

Abstract

Thyroid hormones (THs) were found to play significant role in brain development and its further functioning in adulthood. Several studies deliver data on THs’ meaning in the pathogeny of major depressive disorder (MDD). Supplementation of THs is considered to augment and accelerate antidepressant treatment. THs transport and signaling act via complicated protein net which can be disturbed at any level. This is to review a contemporary knowledge of THs transport, signaling, metabolism, and role in MDD. The relevant English literature from PubMed/MEDLINE and EMBASE databases was searched using the terms: thyroid hormones, transporters, receptors, deiodinases, and depression. Own clinical observations of THs significance for depression severity and outcome are also shared. Studies on variability in thyroid function may provide strategies on more efficient, personalized treatment in MDD patients.

Keywords

Thyroid Hormone Major Depressive Disorder Major Depressive Disorder Subclinical Hypothyroidism Major Depressive Disorder Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author have no competing interests to declare.

References

  1. 1.
    Murray CJ, Lopez AD. Evidence-based health policy-lessons from the Global Burden of Disease Study. Science. 1996;274:740–3.CrossRefPubMedGoogle Scholar
  2. 2.
    American Psychiatry Association. Diagnostic and statistical manual for mental disorders. 5th ed. Washington, DC: APA; 2013.CrossRefGoogle Scholar
  3. 3.
    Maes M, Meltzer HY, Cosyns P, Suy E, Schotte C. An evaluation of basal hypothalamic-pituitary-thyroid axis function in depression: results of a large-scaled and controlled study. Psychoneuroendocrinology. 1993;18(8):607–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Ordas DM, Labbate LA. Routine screening of thyroid function in patients hospitalized for major depression or dysthymia? Ann Clin Psychiatry. 1995;7(4):161–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Berent D, Zboralski K, Orzechowska A, Gałecki P. Thyroid hormones association with depression severity and clinical outcome in patients with major depressive disorder. Mol Biol Rep. 2014;41:2419–25.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sintzel F, Mallaret M, Bougerol T. Potentializing of tricyclics and serotoninergics by thyroid hormones in resistant depressive disorders. Encéphale. 2004;30(3):267–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Canaris GJ, Manowitz NR, Mayor G, Ridgwa EC. The Colorado thyroid disease prevalence study. Arch Intern. 2000;160(4):24–526.CrossRefGoogle Scholar
  8. 8.
    Wiersinga WM, Fliers E. Determining the thyroid hormones T3 and T4 in the urine: an unreliable test for hypothyroidism. Ned Tijdschr Geneeskd. 2007;151(51):2813–5.PubMedGoogle Scholar
  9. 9.
    Li H, Wang Y, Zheng J, Wang Y, Huang D, Liang L, Ren X, Dou Y, Zhu X. Analysis on iodine nutritional status and thyroid function in pregnant women. Wei Sheng Yan Jiu. 2012;41(4):532–5.PubMedGoogle Scholar
  10. 10.
    Maes M, Vandewoude M, Maes L, Schotte C, Cosyns P. A revised interpretation of the TRH test results in female depressed patients. Part I: TSH responses. Effects of severity of illness, thyroid hormones, monoamines, age, sex hormonal, corticosteroid and nutritional state. J Affect Disord. 1989;16(2–3):203–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Forrest D, Nunez J. Thyroid hormone and transcriptional regulation in the CNS. Encycl Neurosci. 2009;993–1000.Google Scholar
  12. 12.
    Andersen S, Pedersen KM, Bruun NH, Laurbeg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87:1068–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab. 2007;21(2):265–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Crantz FR, Silva JE, Larsen PR. An analysis of the sources and quantity of 3,5,30-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology. 1982;110:367–75.CrossRefPubMedGoogle Scholar
  15. 15.
    van der Deure WM, Peeters RP, Visser TJ. Genetic variation in thyroid hormone transporters. Best Pract Res Clin Endocrinol Metab. 2007;21(2):339–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Friesema EC, Ganguly S, Abdalla, Manning Fox JE, Hallestrap AP, Visse TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Friesema EC, Jachtenberg JW, Jansen J. Human monocarboxylate transporter 10 does transport thyroid hormone. Thyroid. 2006;16(913):167.Google Scholar
  18. 18.
    Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol. 2008;20:784–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Murata Y. Multiple isoforms of thyroid hormone receptor: an analysis of their relative contribution in mediating thyroid hormone action. Nagoya J Med Sci. 1998;61:103–15.PubMedGoogle Scholar
  20. 20.
    Cheng SY. Isoform-dependent actions of thyroid hormone nuclear receptors: lessons from knockin mutant mice. Steroids. 2005;70:450–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels HH, Scanlan TS, Vennstrom B, Samarut J. International union of pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev. 2006;58:705–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Forrest D, Vennstrom B. Functions of thyroid hormone receptors in mice. Thyroid. 2000;10:41–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Hahm JB, Schroeder AC, Privalsky ML. The two major isoforms of thyroid hormone receptor, TRa1 and TRb1, preferentially partner with distinct panels of auxiliary proteins. Mol Cell Endocrinol. 2014;383:80–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Visser WE, Friesema ECH, Jansen J, Visser TJ. Thyroid hormone transport by monocarboxylate transporters. Best Pract Res Clin Endocrinol Metab. 2007;21(2):223–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Baqui M, Botero D, Gereben B, Curcio C, Harney JW, Salvatore D, Sorimachi K, Larsen PR, Bianco AC. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem. 2003;278:1206–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Kirkegaard C, Faber J. The role of thyroid hormones in depression. Eur J Endocrinol. 1998;138:1–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Philibert RA, Beach SR, Gunter TD, Todorov AA, Brody GH, Vijayendran M, Elliott L, Hollenbeck N, Russell D, Cutrona C. The relationship of deiodinase 1 genotype and thyroid function to lifetime history of major depression in three independent populations. Am J Med Genet B. 2011;156B(5):593–9.CrossRefGoogle Scholar
  28. 28.
    Cooper-Kazaz R, van der Deure WM, Medici M, Visser TJ, Alkelai A, Glaser B, Peeters RP, Lerer B. Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. J Affect Disord. 2009;116:113–6.CrossRefPubMedGoogle Scholar
  29. 29.
    He B, Li J, Wang G, Ju W, Lu Y, Shi Y, He L, Zhong N. Association of genetic polymorphisms in the type II deiodinase gene with bipolar disorder in a subset of Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(6):986–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Jakobs TC, Koehler MR, Schmutzler C, Glaser F, Schmid M, Kohrle J. Structure of the human type I iodothyronine 5-prime-deiodinase gene and localization to chromosome 1p32-p33. Genomics. 1997;42:361–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Araki O, Murakami M, Morimura T, Kamiya Y, Hosoi Y, Kato Y, Mori M. Assignment of type II iodothyronine deiodinase gene (DIO2) to human chromosome band 14q24.2-q24.3 by in situ hybridization. Cytogenet Cell Genet. 1999;84:73–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Hernandez A, Park JP, Lyon GJ, Mohandas TK, St. Germain DL. Localization of the type 3 iodothyronine deiodinase (DIO3) gene to human chromosome 14q32 and mouse chromosome 12F1. Genomics. 1998;53:119–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Panicker V, Cluett C, Shields B, Murray A, Parnell KS, Perry JRB, Weedon MN, Singleton A, Hernandez D, Evans J, Durant C, Ferrucci L, Melzer D, Saravanan P, Visser TJ, Ceresini G, Hattersley AT, Vaidya B, Dayan CM, Frayling TM. A common variation in Deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine. J Clin Endocrinol Metab. 2008;93(8):3075–81.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peeters RP, van Toor H, Klootwijk W, de Rijke YB, Kuiper GG, Uitterlinden AG, Visser TJ. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J Clin Endocrinol Metab. 2003;88(6):2880–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Cleare AJ, McGregor A, O’Keane V. Neuroendocrine evidence for an association between hypothyroidism, reduced central 5-HT activity and depression. Clin Endocrinol (Oxford). 1995;43:713–9.CrossRefGoogle Scholar
  36. 36.
    Cleare AJ, McGregor A, Chambers SM, Dawling S, O’Keane V. Thyroxine replacement increases central 5-hydroxytryptamine activity and reduces depressive symptoms in hypothyroidism. Neuroendocrinology. 1996;64:65–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Gur E, Lerer B, Newman ME. Chronic clomipramine and triiodothyronine increase serotonin levels in rat frontal cortex in vivo: relationship to serotonin autoreceptor activity. J Pharmacol Exp Ther. 1999;288:81–7.PubMedGoogle Scholar
  38. 38.
    Heal DJ, Smith SL. The effects of acute and repeated administration of T3 to mice on 5-HT1 and 5-HT2 function in the brain and its influence on the actions of repeated electroconvulsive shock. Neuropharmacology. 1998;27:1239–48.CrossRefGoogle Scholar
  39. 39.
    Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. J Am Med Assoc. 2004;292:2591–9.CrossRefGoogle Scholar
  40. 40.
    Tsuru J, Ishitobi Y, Ninomiya T, Kanehisa M, Imanaga J, Inoue A, Okamoto S, Maruyama Y, Higuma H, Tanaka Y, Hanada H, Isogawa K, Akiyoshi J. The thyrotropin releasing hormone test may predict recurrence of clinical depression within ten years after discharge. Neuro Endocrinol Lett. 2013;34(5):409–17.PubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of PsychiatryMedical University of WarsawWarsawPoland

Personalised recommendations