Bipolar Disorders and Biological Rhythms

  • Robert Gonzalez


All organisms exhibit rhythmic oscillations in a variety of physiological processes. Central to this process is the biological time-keeping system which functions to relay environmental signals necessary for organisms to synchronize physiological and behavioral processes and thus adapt to their environment. Disruptions in this timing system result in disturbances of biological rhythms [1–8] and may have clinical and pathophysiological relevance to bipolar disorder.


Bipolar Disorder Sleep Deprivation Bipolar Patient Bipolar Depression Biological Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buijs RM, et al. Suprachiasmatic nucleus lesion increases corticosterone secretion. Am J Physiol. 1993;264(6 Pt 2):R1186–92.PubMedGoogle Scholar
  2. 2.
    Kalsbeek A, et al. Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci. 2000;12(9):3146–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Edgar DM, et al. Triazolam fails to induce sleep in suprachiasmatic nucleus-lesioned rats. Neurosci Lett. 1991;125(2):125–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Eastman CI, Mistlberger RE, Rechtschaffen A. Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav. 1984;32(3):357–68.CrossRefPubMedGoogle Scholar
  5. 5.
    Mistlberger RE, et al. Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep. 1983;6(3):217–33.PubMedGoogle Scholar
  6. 6.
    Mistlberger RE. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev. 2005;49(3):429–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen RA, Albers HE. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology. 1991;41(5):726–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Boivin DB, et al. Non-24-hour sleep-wake syndrome following a car accident. Neurology. 2003;60(11):1841–3.CrossRefPubMedGoogle Scholar
  9. 9.
    American Psychiatric Association, DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. Arlington: American Psychiatric Association; 2013. xliv, 947 p.Google Scholar
  10. 10.
    Goodwin FK, Jamison KR. Manic-depressive illness. New York: Oxford University Press; 1990. xxi, 938, [2] of plates.Google Scholar
  11. 11.
    Wehr TA, et al. Sleep and circadian rhythms in affective patients isolated from external time cues. Psychiatry Res. 1985;15(4):327–39.CrossRefPubMedGoogle Scholar
  12. 12.
    Kripke DF, et al. Circadian rhythm disorders in manic-depressives. Biol Psychiatry. 1978;13(3):335–51.PubMedGoogle Scholar
  13. 13.
    Pflug B, Engelmann W, Gaertner HJ. Circadian course of body temperature and the excretion of MHPG and VMA in a patient with bipolar depression. J Neural Transm. 1982;53(2–3):213–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Ralph MR, Menaker M. A mutation of the circadian system in golden hamsters. Science. 1988;241(4870):1225–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Ralph MR, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996;272(5260):419–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Lowrey PL, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000;288(5465):483–92.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu C, et al. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell. 1997;91(6):855–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Wood J, et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res. 2009;166(2–3):201–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nurnberger Jr JI, et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry. 2000;57(6):572–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Wehr TA, Muscettola G, Goodwin FK. Urinary 3-methoxy-4-hydroxyphenylglycol circadian rhythm. Early timing (phase-advance) in manic-depressives compared with normal subjects. Arch Gen Psychiatry. 1980;37(3):257–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Salvatore P, et al. Circadian activity rhythm abnormalities in ill and recovered bipolar I disorder patients. Bipolar Disord. 2008;10(2):256–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Linkowski P, et al. The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. J Clin Endocrinol Metab. 1985;61(3):429–38.CrossRefPubMedGoogle Scholar
  24. 24.
    Linkowski P, et al. ACTH, cortisol and growth hormone 24-hour profiles in major depressive illness. Acta Psychiatr Belg. 1985;85(5):615–23.PubMedGoogle Scholar
  25. 25.
    Linkowski P, et al. The 24-hour profiles of cortisol, prolactin, and growth hormone secretion in mania. Arch Gen Psychiatry. 1994;51(8):616–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Duncan Jr WC. Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther. 1996;71(3):253–312.CrossRefPubMedGoogle Scholar
  27. 27.
    Pflug B, Martin W. Analysis of circadian temperature rhythm in endogenous depressive illness (author’s transl). Arch Psychiatr Nervenkr. 1980;229(2):127–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsujimoto T, et al. Circadian rhythms in depression. Part II: circadian rhythms in inpatients with various mental disorders. J Affect Disord. 1990;18(3):199–210.CrossRefPubMedGoogle Scholar
  29. 29.
    Pflug B, Erikson R, Johnsson A. Depression and daily temperature. A long-term study. Acta Psychiatr Scand. 1976;54(4):254–66.CrossRefPubMedGoogle Scholar
  30. 30.
    Pflug B, Johnsson A, Ekse AT. Manic-depressive states and daily temperature. Some circadian studies. Acta Psychiatr Scand. 1981;63(3):277–89.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones SH, Hare DJ, Evershed K. Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar Disord. 2005;7(2):176–86.CrossRefPubMedGoogle Scholar
  32. 32.
    Krane-Gartiser K, et al. Actigraphic assessment of motor activity in acutely admitted inpatients with bipolar disorder. PLoS One. 2014;9(2):e89574.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Reinberg AE, Ashkenazi I, Smolensky MH. Euchronism, allochronism, and dyschronism: is internal desynchronization of human circadian rhythms a sign of illness? Chronobiol Int. 2007;24(4):553–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Souetre E, et al. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res. 1989;28(3):263–78.CrossRefPubMedGoogle Scholar
  35. 35.
    Reinberg A, et al. Desynchronization of the oral temperature circadian rhythm and intolerance to shift work. Nature. 1984;308(5956):272–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Reinberg A, et al. Alteration of period and amplitude of circadian rhythms in shift workers. With special reference to temperature, right and left hand grip strength. Eur J Appl Physiol Occup Physiol. 1988;57(1):15–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Reinberg A, et al. Internal desynchronization of circadian rhythms and tolerance of shift work. Chronobiologia. 1989;16(1):21–34.PubMedGoogle Scholar
  38. 38.
    Motohashi Y. Alteration of circadian rhythm in shift-working ambulance personnel. Monitoring of salivary cortisol rhythm. Ergonomics. 1992;35(11):1331–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Reinberg A, et al. Oral temperature, circadian rhythm amplitude, ageing and tolerance to shift-work. Ergonomics. 1980;23(1):55–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Andlauer P, et al. Amplitude of the oral temperature circadian rhythm and the tolerance to shift-work. J Physiol Paris. 1979;75(5):507–12.PubMedGoogle Scholar
  41. 41.
    Ehlers CL. Social zeitgebers, biological rhythms and depression. Clin Neuropharmacol. 1992;15(Suppl 1 Pt A):44A–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Ehlers CL, Frank E, Kupfer DJ. Social zeitgebers and biological rhythms. A unified approach to understanding the etiology of depression. Arch Gen Psychiatry. 1988;45(10):948–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Hirschfeld RM, Cross CK. Epidemiology of affective disorders. Arch Gen Psychiatry. 1982;39(1):35–46.CrossRefPubMedGoogle Scholar
  44. 44.
    Ambelas A. Psychologically stressful events in the precipitation of manic episodes. Br J Psychiatry. 1979;135:15–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Ambelas A, George M. Predictability of course of illness in manic patients positive for life events. J Nerv Ment Dis. 1986;174(11):693–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Dunner DL, Patrick V, Fieve RR. Life events at the onset of bipolar affective illness. Am J Psychiatry. 1979;136(4B):508–11.PubMedGoogle Scholar
  47. 47.
    Patrick V, Dunner DL, Fieve RR. Life events and primary affective illness. Acta Psychiatr Scand. 1978;58(1):48–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Joffe RT, MacDonald C, Kutcher SP. Life events and mania: a case-controlled study. Psychiatry Res. 1989;30(2):213–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Aronson TA, Shukla S. Life events and relapse in bipolar disorder: the impact of a catastrophic event. Acta Psychiatr Scand. 1987;75(6):571–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Ellicott A, et al. Life events and the course of bipolar disorder. Am J Psychiatry. 1990;147(9):1194–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Hunt N, Bruce-Jones W, Silverstone T. Life events and relapse in bipolar affective disorder. J Affect Disord. 1992;25(1):13–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Malkoff-Schwartz S, et al. Social rhythm disruption and stressful life events in the onset of bipolar and unipolar episodes. Psychol Med. 2000;30(5):1005–16.CrossRefPubMedGoogle Scholar
  53. 53.
    Malkoff-Schwartz S, et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch Gen Psychiatry. 1998;55(8):702–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Ashman SB, et al. Relationship between social rhythms and mood in patients with rapid cycling bipolar disorder. Psychiatry Res. 1999;86(1):1–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Scott J, Colom F. Psychosocial treatments for bipolar disorders. Psychiatr Clin North Am. 2005;28(2):371–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry. 2000;48(6):593–604.CrossRefPubMedGoogle Scholar
  57. 57.
    Frank E, et al. Adjunctive psychotherapy for bipolar disorder: effects of changing treatment modality. J Abnorm Psychol. 1999;108(4):579–87.CrossRefPubMedGoogle Scholar
  58. 58.
    Frank E, et al. Inducing lifestyle regularity in recovering bipolar disorder patients: results from the maintenance therapies in bipolar disorder protocol. Biol Psychiatry. 1997;41(12):1165–73.CrossRefPubMedGoogle Scholar
  59. 59.
    Frank E, et al. Two-year outcomes for interpersonal and social rhythm therapy in individuals with bipolar I disorder. Arch Gen Psychiatry. 2005;62(9):996–1004.CrossRefPubMedGoogle Scholar
  60. 60.
    Reinberg A, Ashkenazi I. Concepts in human biological rhythms. Dialogues Clin Neurosci. 2003;5(4):327–42.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Reinberg AE, et al. Placebo effect on the circadian rhythm period tau of temperature and hand-grip strength rhythms: interindividual and gender-related difference. Chronobiol Int. 1994;11(1):45–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Siever LJ, Davis KL. Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry. 1985;142(9):1017–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Schulz H, Lund R. On the origin of early REM episodes in the sleep of depressed patients: a comparison of three hypotheses. Psychiatry Res. 1985;16(1):65–77.CrossRefPubMedGoogle Scholar
  64. 64.
    Gwirtsman HE, et al. Apparent phase advance in diurnal MHPG rhythm in depression. Am J Psychiatry. 1989;146(11):1427–33.CrossRefPubMedGoogle Scholar
  65. 65.
    Ahn YM, et al. Chronotype distribution in bipolar I disorder and schizophrenia in a Korean sample. Bipolar Disord. 2008;10(2):271–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Mansour HA, et al. Circadian phase variation in bipolar I disorder. Chronobiol Int. 2005;22(3):571–84.CrossRefPubMedGoogle Scholar
  67. 67.
    Kudielka BM, et al. Morningness and eveningness: the free cortisol rise after awakening in “early birds” and “night owls”. Biol Psychol. 2006;72(2):141–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. Behav Neurosci. 2001;115(4):895–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Kerkhof GA, Van Dongen HP. Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett. 1996;218(3):153–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Bailey SL, Heitkemper MM. Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol Int. 2001;18(2):249–61.CrossRefPubMedGoogle Scholar
  71. 71.
    Akerstedt T, Froberg JE. Interindividual differences in circadian patterns of catecholamine excretion, body temperature, performance, and subjective arousal. Biol Psychol. 1976;4(4):277–92.CrossRefPubMedGoogle Scholar
  72. 72.
    Carrier J, et al. Sleep and morningness-eveningness in the ‘middle’ years of life (20–59 y). J Sleep Res. 1997;6(4):230–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Ishihara K, et al. Differences in sleep-wake habits and EEG sleep variables between active morning and evening subjects. Sleep. 1987;10(4):330–42.PubMedGoogle Scholar
  74. 74.
    Rosenthal L, et al. Sleepiness/alertness among healthy evening and morning type individuals. Sleep Med. 2001;2(3):243–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Adan A, Guardia J. Circadian variations of self-reported activation: a multidimensional approach. Chronobiologia. 1993;20(3–4):233–44.PubMedGoogle Scholar
  76. 76.
    Kuller R. The influence of light on circarhythms in humans. J Physiol Anthropol Appl Human Sci. 2002;21(2):87–91.CrossRefPubMedGoogle Scholar
  77. 77.
    Partonen T, Lonnqvist J. Seasonal variation in bipolar disorder. Br J Psychiatry. 1996;169(5):641–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Cassidy F, Carroll BJ. Seasonal variation of mixed and pure episodes of bipolar disorder. J Affect Disord. 2002;68(1):25–31.CrossRefPubMedGoogle Scholar
  79. 79.
    Silverstone T, et al. Is there a seasonal pattern of relapse in bipolar affective disorders? A dual northern and southern hemisphere cohort study. Br J Psychiatry. 1995;167(1):58–60.CrossRefPubMedGoogle Scholar
  80. 80.
    Shin K, et al. Seasonality in a community sample of bipolar, unipolar and control subjects. J Affect Disord. 2005;86(1):19–25.CrossRefPubMedGoogle Scholar
  81. 81.
    Thompson C, et al. A comparison of normal, bipolar and seasonal affective disorder subjects using the Seasonal Pattern Assessment Questionnaire. J Affect Disord. 1988;14(3):257–64.CrossRefPubMedGoogle Scholar
  82. 82.
    Hakkarainen R, et al. Seasonal changes, sleep length and circadian preference among twins with bipolar disorder. BMC Psychiatry. 2003;3:6.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rock P, et al. Daily rest-activity patterns in the bipolar phenotype: a controlled actigraphy study. Chronobiol Int. 2014;31(2):290–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Teicher MH. Actigraphy and motion analysis: new tools for psychiatry. Harv Rev Psychiatry. 1995;3(1):18–35.CrossRefPubMedGoogle Scholar
  85. 85.
    Beigel A, Murphy DL. Unipolar and bipolar affective illness. Differences in clinical characteristics accompanying depression. Arch Gen Psychiatry. 1971;24(3):215–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Kupfer DJ, et al. Psychomotor activity in affective states. Arch Gen Psychiatry. 1974;30(6):765–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Gonzalez R, et al. The relationship between affective state and the rhythmicity of activity in bipolar disorder. J Clin Psychiatry. 2014;75(4):e317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25(3–4):177–95.CrossRefPubMedGoogle Scholar
  89. 89.
    Roseboom PH, et al. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology. 1996;137(7):3033–45.PubMedGoogle Scholar
  90. 90.
    Kayumov L, Zhdanova IV, Shapiro CM. Melatonin, sleep, and circadian rhythm disorders. Semin Clin Neuropsychiatry. 2000;5(1):44–55.PubMedGoogle Scholar
  91. 91.
    Pacchierotti C, et al. Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol. 2001;22(1):18–32.CrossRefPubMedGoogle Scholar
  92. 92.
    Buckley TM, Schatzberg AF. A pilot study of the phase angle between cortisol and melatonin in major depression – a potential biomarker? J Psychiatr Res. 2010;44(2):69–74.CrossRefPubMedGoogle Scholar
  93. 93.
    Mendlewicz J, et al. The 24 hour pattern of plasma melatonin in depressed patients before and after treatment. Commun Psychopharmacol. 1980;4(1):49–55.PubMedGoogle Scholar
  94. 94.
    Kennedy SH, et al. Nocturnal melatonin and 24-hour 6-sulphatoxymelatonin levels in various phases of bipolar affective disorder. Psychiatry Res. 1996;63(2–3):219–22.CrossRefPubMedGoogle Scholar
  95. 95.
    Lewy AJ, et al. Supersensitivity to light: possible trait marker for manic-depressive illness. Am J Psychiatry. 1985;142(6):725–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Hudson JI, et al. Polysomnographic characteristics of young manic patients. Comparison with unipolar depressed patients and normal control subjects. Arch Gen Psychiatry. 1992;49(5):378–83.CrossRefPubMedGoogle Scholar
  97. 97.
    Eidelman P, et al. Sleep architecture as correlate and predictor of symptoms and impairment in inter-episode bipolar disorder: taking on the challenge of medication effects. J Sleep Res. 2010;19(4):516–24.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Eidelman P, et al. Sleep, illness course, and concurrent symptoms in inter-episode bipolar disorder. J Behav Ther Exp Psychiatry. 2010;41(2):145–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Gruber J, et al. Sleep functioning in relation to mood, function, and quality of life at entry to the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). J Affect Disord. 2009;114(1–3):41–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Sitaram N, Gillin JC, Bunney Jr WE. The switch process in manic-depressive illness. Circadian variation in time of switch and sleep and manic ratings before and after switch. Acta Psychiatr Scand. 1978;58(3):267–78.CrossRefPubMedGoogle Scholar
  101. 101.
    The switch process in manic-depressive psychosis. Ann Intern Med. 1977;87(3):319–35.Google Scholar
  102. 102.
    Bunney Jr WE, et al. The “switch process” in manic-depressive illness. II. Relationship to catecholamines, REM sleep, and drugs. Arch Gen Psychiatry. 1972;27(3):304–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Duffy A, et al. Early stages in the development of bipolar disorder. J Affect Disord. 2010;121(1–2):127–35.CrossRefPubMedGoogle Scholar
  104. 104.
    Skjelstad DV, Malt UF, Holte A. Symptoms and signs of the initial prodrome of bipolar disorder: a systematic review. J Affect Disord. 2010;126(1–2):1–13.CrossRefPubMedGoogle Scholar
  105. 105.
    Duffy A. The early course of bipolar disorder in youth at familial risk. J Can Acad Child Adolesc Psychiatry. 2009;18(3):200–5.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Faedda GL, et al. Pediatric bipolar disorder: phenomenology and course of illness. Bipolar Disord. 2004;6(4):305–13.CrossRefPubMedGoogle Scholar
  107. 107.
    Lish JD, et al. The National Depressive and Manic-depressive Association (DMDA) survey of bipolar members. J Affect Disord. 1994;31(4):281–94.CrossRefPubMedGoogle Scholar
  108. 108.
    Egeland JA, et al. Prodromal symptoms before onset of manic-depressive disorder suggested by first hospital admission histories. J Am Acad Child Adolesc Psychiatry. 2000;39(10):1245–52.CrossRefPubMedGoogle Scholar
  109. 109.
    Hirschfeld RM, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry. 2003;64(2):161–74.CrossRefPubMedGoogle Scholar
  110. 110.
    Rucklidge JJ. Retrospective parent report of psychiatric histories: do checklists reveal specific prodromal indicators for postpubertal-onset pediatric bipolar disorder? Bipolar Disord. 2008;10(1):56–66.CrossRefPubMedGoogle Scholar
  111. 111.
    Cookson JC. The neuroendocrinology of mania. J Affect Disord. 1985;8(3):233–41.CrossRefPubMedGoogle Scholar
  112. 112.
    Daban C, et al. Hypothalamic-pituitary-adrenal axis and bipolar disorder. Psychiatr Clin North Am. 2005;28(2):469–80.CrossRefPubMedGoogle Scholar
  113. 113.
    Halbreich U, et al. Cortisol secretion in endogenous depression. II. Time-related functions. Arch Gen Psychiatry. 1985;42(9):909–14.CrossRefPubMedGoogle Scholar
  114. 114.
    Ellenbogen MA, Hodgins S, Walker CD. High levels of cortisol among adolescent offspring of parents with bipolar disorder: a pilot study. Psychoneuroendocrinology. 2004;29(1):99–106.CrossRefPubMedGoogle Scholar
  115. 115.
    Deshauer D, et al. The cortisol awakening response in bipolar illness: a pilot study. Can J Psychiatry. 2003;48(7):462–6.PubMedGoogle Scholar
  116. 116.
    Wehr TA. Improvement of depression and triggering of mania by sleep deprivation. JAMA. 1992;267(4):548–51.CrossRefPubMedGoogle Scholar
  117. 117.
    Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000;3(2):59–74.PubMedGoogle Scholar
  118. 118.
    Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–41.CrossRefPubMedGoogle Scholar
  119. 119.
    Herzog ED, Takahashi JS, Block GD. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci. 1998;1(8):708–13.CrossRefPubMedGoogle Scholar
  120. 120.
    Mansour HA, Monk TH, Nimgaonkar VL. Circadian genes and bipolar disorder. Ann Med. 2005;37(3):196–205.CrossRefPubMedGoogle Scholar
  121. 121.
    Jones KH, et al. Age-related change in the association between a polymorphism in the PER3 gene and preferred timing of sleep and waking activities. J Sleep Res. 2007;16(1):12–6.CrossRefPubMedGoogle Scholar
  122. 122.
    Pereira DS, et al. Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep. 2005;28(1):29–32.PubMedGoogle Scholar
  123. 123.
    Johansson C, et al. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology. 2003;28(4):734–9.CrossRefPubMedGoogle Scholar
  124. 124.
    Archer SN, et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003;26(4):413–5.PubMedGoogle Scholar
  125. 125.
    Ebisawa T, et al. Association of structural polymorphisms in the human period 3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2(4):342–6.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Toh KL, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040–3.CrossRefPubMedGoogle Scholar
  127. 127.
    Kamnasaran D, et al. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet. 2003;40(5):325–32.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Pickard BS, et al. Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am J Med Genet B Neuropsychiatr Genet. 2005;136B(1):26–32.CrossRefPubMedGoogle Scholar
  129. 129.
    Pieper AA, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A. 2005;102(39):14052–7.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pickard BS, et al. The NPAS3 gene – emerging evidence for a role in psychiatric illness. Ann Med. 2006;38(6):439–48.CrossRefPubMedGoogle Scholar
  131. 131.
    Lamont EW, et al. Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci. 2010;47(1):27–35.PubMedGoogle Scholar
  132. 132.
    Benedetti F, et al. A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett. 2004;368(2):123–6.CrossRefPubMedGoogle Scholar
  133. 133.
    Benedetti F, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett. 2005;376(1):51–5.CrossRefPubMedGoogle Scholar
  134. 134.
    Shi J, et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1047–55.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Mansour HA, et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5(2):150–7.CrossRefPubMedGoogle Scholar
  136. 136.
    Mansour HA, et al. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord. 2009;11(7):701–10.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Soria V, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35(6):1279–89.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Nievergelt CM, et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141(3):234–41.CrossRefGoogle Scholar
  139. 139.
    Kripke DF, et al. Circadian polymorphisms associated with affective disorders. J Circadian Rhythms. 2009;7:2.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Serretti A, et al. Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2003;121(1):35–8.CrossRefGoogle Scholar
  141. 141.
    Serretti A, et al. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2005;137(1):36–9.CrossRefGoogle Scholar
  142. 142.
    Lee KY, et al. Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1196–201.CrossRefPubMedGoogle Scholar
  143. 143.
    Szczepankiewicz A, et al. Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology. 2006;53(1):51–6.CrossRefPubMedGoogle Scholar
  144. 144.
    Pickard BS, et al. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatry. 2008;14(9):874–84.CrossRefPubMedGoogle Scholar
  145. 145.
    Kishi T, et al. Association analysis of nuclear receptor Rev-erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res. 2008;62(4):211–5.CrossRefPubMedGoogle Scholar
  146. 146.
    Severino G, et al. Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord. 2009;11(2):215–20.CrossRefPubMedGoogle Scholar
  147. 147.
    McGrath CL, et al. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry. 2009;9:70.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Benedetti F, et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2003;123(1):23–6.CrossRefGoogle Scholar
  149. 149.
    Yang S, et al. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry. 2009;14(2):143–55.CrossRefPubMedGoogle Scholar
  150. 150.
    Roybal K, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104(15):6406–11.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Weiss BL, et al. Psychomotor activity in mania. Arch Gen Psychiatry. 1974;31(3):379–83.CrossRefPubMedGoogle Scholar
  152. 152.
    Heninger GR, Kirstein L. Effects of lithium carbonate on motor activity in mania and depression. J Nerv Ment Dis. 1977;164(3):168–75.CrossRefPubMedGoogle Scholar
  153. 153.
    Klein E, et al. Discontinuation of lithium treatment in remitted bipolar patients: relationship between clinical outcome and changes in sleep-wake cycles. J Nerv Ment Dis. 1991;179(8):499–501.CrossRefPubMedGoogle Scholar
  154. 154.
    Frank E, et al. The role of interpersonal and social rhythm therapy in improving occupational functioning in patients with bipolar I disorder. Am J Psychiatry. 2008;165(12):1559–65.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wirz-Justice A, et al. Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med. 2005;35(7):939–44.CrossRefPubMedGoogle Scholar
  156. 156.
    Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10(8):647–63. quiz 672.CrossRefPubMedGoogle Scholar
  157. 157.
    Golden RN, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry. 2005;162(4):656–62.CrossRefPubMedGoogle Scholar
  158. 158.
    Rosenthal NE, et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry. 1984;41(1):72–80.CrossRefPubMedGoogle Scholar
  159. 159.
    Benedetti F, et al. Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry. 2005;66(12):1535–40.CrossRefPubMedGoogle Scholar
  160. 160.
    Colombo C, et al. Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res. 2000;95(1):43–53.CrossRefPubMedGoogle Scholar
  161. 161.
    Beauchemin KM, Hays P. Sunny hospital rooms expedite recovery from severe and refractory depressions. J Affect Disord. 1996;40(1–2):49–51.CrossRefPubMedGoogle Scholar
  162. 162.
    Benedetti F, et al. Morning sunlight reduces length of hospitalization in bipolar depression. J Affect Disord. 2001;62(3):221–3.CrossRefPubMedGoogle Scholar
  163. 163.
    Papatheodorou G, Kutcher S. The effect of adjunctive light therapy on ameliorating breakthrough depressive symptoms in adolescent-onset bipolar disorder. J Psychiatry Neurosci. 1995;20(3):226–32.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Beauchemin KM, Hays P. Phototherapy is a useful adjunct in the treatment of depressed in-patients. Acta Psychiatr Scand. 1997;95(5):424–7.CrossRefPubMedGoogle Scholar
  165. 165.
    Kripke DF, et al. Controlled trial of bright light for nonseasonal major depressive disorders. Biol Psychiatry. 1992;31(2):119–34.CrossRefPubMedGoogle Scholar
  166. 166.
    Leibenluft E, et al. Light therapy in patients with rapid cycling bipolar disorder: preliminary results. Psychopharmacol Bull. 1995;31(4):705–10.PubMedGoogle Scholar
  167. 167.
    Sit D, et al. Light therapy for bipolar disorder: a case series in women. Bipolar Disord. 2007;9(8):918–27.CrossRefPubMedGoogle Scholar
  168. 168.
    Praschak-Rieder N, et al. Suicidal tendencies as a complication of light therapy for seasonal affective disorder: a report of three cases. J Clin Psychiatry. 1997;58(9):389–92.CrossRefPubMedGoogle Scholar
  169. 169.
    Kripke DF. Timing of phototherapy and occurrence of mania. Biol Psychiatry. 1991;29(11):1156–7.CrossRefPubMedGoogle Scholar
  170. 170.
    Labbate LA, et al. Side effects induced by bright light treatment for seasonal affective disorder. J Clin Psychiatry. 1994;55(5):189–91.PubMedGoogle Scholar
  171. 171.
    Schwitzer J, et al. Mania as a side effect of phototherapy. Biol Psychiatry. 1990;28(6):532–4.CrossRefPubMedGoogle Scholar
  172. 172.
    Meesters Y, van Houwelingen CA. Rapid mood swings after unmonitored light exposure. Am J Psychiatry. 1998;155(2):306.PubMedGoogle Scholar
  173. 173.
    Bauer MS, et al. Mood and behavioral effects of four-week light treatment in winter depressives and controls. J Psychiatr Res. 1994;28(2):135–45.CrossRefPubMedGoogle Scholar
  174. 174.
    Bersani G, Garavini A. Melatonin add-on in manic patients with treatment resistant insomnia. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24(2):185–91.CrossRefPubMedGoogle Scholar
  175. 175.
    Leibenluft E, et al. Effects of exogenous melatonin administration and withdrawal in five patients with rapid-cycling bipolar disorder. J Clin Psychiatry. 1997;58(9):383–8.CrossRefPubMedGoogle Scholar
  176. 176.
    Zupancic M, Guilleminault C. Agomelatine: a preliminary review of a new antidepressant. CNS Drugs. 2006;20(12):981–92.CrossRefPubMedGoogle Scholar
  177. 177.
    Calabrese JR, Guelfi JD, Perdrizet-Chevallier C. Agomelatine adjunctive therapy for acute bipolar depression: preliminary open data. Bipolar Disord. 2007;9(6):628–35.CrossRefPubMedGoogle Scholar
  178. 178.
    Hallam KT, et al. Low doses of lithium carbonate reduce melatonin light sensitivity in healthy volunteers. Int J Neuropsychopharmacol. 2005;8(2):255–9.CrossRefPubMedGoogle Scholar
  179. 179.
    Hallam KT, Olver JS, Norman TR. Effect of sodium valproate on nocturnal melatonin sensitivity to light in healthy volunteers. Neuropsychopharmacology. 2005;30(7):1400–4.PubMedGoogle Scholar
  180. 180.
    Friston KJ, et al. Lithium increases slow wave sleep: possible mediation by brain 5-HT2 receptors? Psychopharmacology (Berl). 1989;98(1):139–40.CrossRefGoogle Scholar
  181. 181.
    Yang JD, et al. Effects of carbamazepine on sleep in healthy volunteers. Biol Psychiatry. 1989;26(3):324–8.CrossRefPubMedGoogle Scholar
  182. 182.
    Harding GF, Alford CA, Powell TE. The effect of sodium valproate on sleep, reaction times, and visual evoked potential in normal subjects. Epilepsia. 1985;26(6):597–601.CrossRefPubMedGoogle Scholar
  183. 183.
    Placidi F, et al. Gabapentin-induced modulation of interictal epileptiform activity related to different vigilance levels. Clin Neurophysiol. 2000;111(9):1637–42.CrossRefPubMedGoogle Scholar
  184. 184.
    Placidi F, et al. Effects of lamotrigine on nocturnal sleep, daytime somnolence and cognitive functions in focal epilepsy. Acta Neurol Scand. 2000;102(2):81–6.CrossRefPubMedGoogle Scholar
  185. 185.
    Rosenwasser AM, Fecteau ME, Logan RW. Effects of ethanol intake and ethanol withdrawal on free-running circadian activity rhythms in rats. Physiol Behav. 2005;84(4):537–42.CrossRefPubMedGoogle Scholar
  186. 186.
    Grunhaus L, et al. Sleep-onset rapid eye movement after electroconvulsive therapy is more frequent in patients who respond less well to electroconvulsive therapy. Biol Psychiatry. 1997;42(3):191–200.CrossRefPubMedGoogle Scholar
  187. 187.
    Klemfuss H. Rhythms and the pharmacology of lithium. Pharmacol Ther. 1992;56(1):53–78.CrossRefPubMedGoogle Scholar
  188. 188.
    Welsh DK, Moore-Ede MC. Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus. Biol Psychiatry. 1990;28(2):117–26.CrossRefPubMedGoogle Scholar
  189. 189.
    Johnsson A, et al. Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders. Int J Chronobiol. 1983;8(3):129–47.PubMedGoogle Scholar
  190. 190.
    Johnsson A, et al. Influence of lithium ions on human circadian rhythms. Z Naturforsch C. 1980;35(5–6):503–7.PubMedGoogle Scholar
  191. 191.
    Johnsson A, et al. Effect of lithium carbonate on circadian periodicity in humans. Pharmakopsychiatr Neuropsychopharmakol. 1979;12(6):423–5.CrossRefPubMedGoogle Scholar
  192. 192.
    Kripke DF, et al. The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry. 1979;14(3):545–8.PubMedGoogle Scholar
  193. 193.
    Campbell SS, et al. Lithium delays circadian phase of temperature and REM sleep in a bipolar depressive: a case report. Psychiatry Res. 1989;27(1):23–9.CrossRefPubMedGoogle Scholar
  194. 194.
    Barbini B, et al. The unipolar-bipolar dichotomy and the response to sleep deprivation. Psychiatry Res. 1998;79(1):43–50.CrossRefPubMedGoogle Scholar
  195. 195.
    Zarate Jr CA, Mathews DC, Furey ML. Human biomarkers of rapid antidepressant effects. Biol Psychiatry. 2013;73(12):1142–55.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Bunney BG, Bunney WE. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry. 2013;73(12):1164–71.CrossRefPubMedGoogle Scholar
  197. 197.
    Benedetti F, et al. Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: new findings supporting the internal coincidence model? J Psychiatr Res. 2001;35(6):323–9.CrossRefPubMedGoogle Scholar
  198. 198.
    Benedetti F, et al. Ongoing lithium treatment prevents relapse after total sleep deprivation. J Clin Psychopharmacol. 1999;19(3):240–5.CrossRefPubMedGoogle Scholar
  199. 199.
    Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–14.CrossRefPubMedGoogle Scholar
  200. 200.
    Smeraldi E, et al. Sustained antidepressant effect of sleep deprivation combined with pindolol in bipolar depression. A placebo-controlled trial. Neuropsychopharmacology. 1999;20(4):380–5.CrossRefPubMedGoogle Scholar
  201. 201.
    Asikainen M, et al. Sleep deprivation increases brain serotonin turnover in the Djungarian hamster. Neurosci Lett. 1995;198(1):21–4.CrossRefPubMedGoogle Scholar
  202. 202.
    Ebert D, et al. Increased limbic blood flow and total sleep deprivation in major depression with melancholia. Psychiatry Res. 1994;55(2):101–9.CrossRefPubMedGoogle Scholar
  203. 203.
    Ebert D, et al. Eye-blink rates and depression. Is the antidepressant effect of sleep deprivation mediated by the dopamine system? Neuropsychopharmacology. 1996;15(4):332–9.CrossRefPubMedGoogle Scholar
  204. 204.
    Ebert D, Berger M. Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation. Psychopharmacology (Berl). 1998;140(1):1–10.CrossRefGoogle Scholar
  205. 205.
    Wu J, et al. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry. 1999;156(8):1149–58.PubMedGoogle Scholar
  206. 206.
    Osland TM, et al. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells. J Psychopharmacol. 2011;25(7):924–33.CrossRefPubMedGoogle Scholar
  207. 207.
    Johansson AS, et al. Valproic acid phase shifts the rhythmic expression of Period 2::Luciferase. J Biol Rhythms. 2011;26(6):541–51.CrossRefPubMedGoogle Scholar
  208. 208.
    Padiath QS, et al. Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks. Chronobiol Int. 2004;21(1):43–55.CrossRefPubMedGoogle Scholar
  209. 209.
    Li X, Bijur GN, Jope RS. Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord. 2002;4(2):137–44.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Wang J, et al. Measuring the impact of apnea and obesity on circadian activity patterns using functional linear modeling of actigraphy data. J Circadian Rhythms. 2011;9(1):11.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of PsychiatryTexas Tech University Health Sciences Center El PasoEl PasoUSA

Personalised recommendations