History of Pineal Gland as Neuroendocrine Organ and the Discovery of Melatonin

  • Francisco López-Muñoz
  • Fernando Marín
  • Cecilio Álamo


The pineal gland is one of the anatomic organs that have generated most controversy and speculation throughout history. Its anatomical localization in the crossroads of the central nervous system (CNS) and its uneven nature in an environment of double structures together with its morphological appearance have attracted the attention of numerous scientists. Thorough and complex physiological theories have been proposed connecting this structure with the human body functionality, including philosophical postulates that relate to its spiritually, including the anatomic jail of the human soul (Cartesian hypotheses). In the early 20th century the first data were published in the scientific literature on the endocrine aspect of the pineal gland, but its ultimate confirmation took place in 1958, with the isolation of melatonin by the team led by Lerner. Later, the term ‘neuroendocrine transducer’ was introduced to explain the principle of the pineal gland, that is to say, the transformation of information about light from the retina into an endocrine response consisting in the synthesis and release of the hormone melatonin.

In turn, this hormone acts as a powerful neurotransmitter in the central nervous system, which makes the pineal gland a kind of ‘biological clock’.


Pineal Gland Melatonin Receptor Human Soul Pineal Organ Anatomic Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pende N. Endocrinología, vol. 1. Buenos Aires: Salvat Editores, S.A.; 1937.Google Scholar
  2. 2.
    Achucarro N, Sacristan JM. Investigaciones histológicas e histopatológicas sobre la glándula pineal humana. Trab Lab Inv Biol. 1912;X:185–208.Google Scholar
  3. 3.
    Baker D. La apertura del tercer ojo. Madrid: Ed. EDAF, S.A; 1985. p. 155.Google Scholar
  4. 4.
    Ariëns-Kappers J. Short history of pineal discovery and research. In: Ariëns-Kappers J, Pévet P, editors. The pineal gland of vertebrates including man, Progress in Brain Research, vol. 52. Amsterdam: Elsevier; 1979. p. 1–22.Google Scholar
  5. 5.
    López-Muñoz F, Boya J. El papel de la glándula pineal en la doctrina psicofisiológica cartesiana. Acta Physiol Pharmacol Ther Latinoam. 1992;42:205–16.PubMedGoogle Scholar
  6. 6.
    López-Muñoz F, Marín F, Alamo C. El devenir histórico de la glándula pineal. I: de válvula espiritual a sede del alma. Rev Neurol. 2010;50:50–7.PubMedGoogle Scholar
  7. 7.
    López-Muñoz F, Marín F, Alamo C. El devenir histórico de la glándula pineal. II: de sede del alma a órgano neuroendocrino. Rev Neurol. 2010;50:117–25.PubMedGoogle Scholar
  8. 8.
    Kudlien F. Medicina helenística y helenístico-romana. En: Historia Universal da la Medicina. Tomo II, Antigüedad Clásica. Barcelona: Salvat Editores, S.A.; 1972.Google Scholar
  9. 9.
    Kitay JI, Altschule MD. The pineal gland. A review of the physiologic literature. Cambridge: Harvard University Press; 1954.Google Scholar
  10. 10.
    Zrenner C. Early theories of pineal functions. Pineal Res Rev. 1985;3:1–40.Google Scholar
  11. 11.
    García Ballester L. Galeno. En: Historia Universal de la Medicina. Tomo II, Antigüedad Clásica. Barcelona: Salvat Editores, S.A., 1972.Google Scholar
  12. 12.
    Hall TS. History of general physiology. 600 B.C. To A.D. 1900. Vol. 1: from pre-Socratic times to the enlightenment. Londres: The University of Chicago Press; 1975.Google Scholar
  13. 13.
    Major RH. Galen as a neurologist. World Neurol. 1961;2:372.PubMedGoogle Scholar
  14. 14.
    Lokhorst G, Kaitaro T. The originality of Descartes’ theory about the pineal gland. J Hist Neurosci. 2001;10:6–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Swanson LW. Quest for the basic plan of nervous system circuitry. Brain Res Rev. 2007;55:356–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Manzoni T. The cerebral ventricles, the animal spirit and the dawn of brain localization of function. Arch Ital Biol. 1998;136:103–52.PubMedGoogle Scholar
  17. 17.
    Spillane JC. The doctrine of the nerves. Chapters in the history of neurology. Nueva York: Oxford University Press; 1981.Google Scholar
  18. 18.
    Wilcox J. The Transmission and Influence of Qusta ibn Luqa’s “On the Difference between Spirit and the Soul”. Ph.D. Thesis. City University of New York; 1985.Google Scholar
  19. 19.
    López-Muñoz F, Rubio G, Molina JD, Alamo C. La glándula pineal como instrumento físico de las facultades del alma: Una conexión histórica persistente. Neurologia. 2012;27:161–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Lain Entralgo P. Historia de la Medicina Moderna y Contemporánea. Barcelona: Editorial Científico-Médica; 1966.Google Scholar
  21. 21.
    Singer C. Vesalius on the human brain. Londres: Oxford University Press; 1952.Google Scholar
  22. 22.
    Finger S. Minds behind the brain. A history of the pioneers and their discoveries. Oxford: Oxford University Press; 2000.Google Scholar
  23. 23.
    Schiller F. Pineal gland, perennial puzzle. J Hist Neurosci. 1995;4:155–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Bargmann W. Die epiphysis cerebri. In: von Möellendorff W, editor. Handbuch der Mikroskopischen Anatomie des Menschen, V1/4. Berlin: Springer; 1943. p. 309–505.Google Scholar
  25. 25.
    Altschule MD. The pineal gland: memory valve or seat of the soul? In: Altschule MD, editor. Roots of modern psychiatry. Essays in the history of psychiatry. New York: Grune and Stratton; 1957.Google Scholar
  26. 26.
    Ariëns-Kappers J. Preface. In: Ariëns-Kappers J, Schadé JP, editors. Structure and function of the epiphysis cerebri, Progress in Brain Research, vol. 10. Amsterdam: Elsevier; 1965. p. IX–XII.CrossRefGoogle Scholar
  27. 27.
    López-Muñoz F, Alamo C, García-García P. La neurofisiología cartesiana: entre los spiritus animalis y el conarium. Arch Neurocien (Mexico). 2010;15:179–93.Google Scholar
  28. 28.
    Vrooman J. Rene Descartes: a biography. New York: Putnam & Sons; 1970.Google Scholar
  29. 29.
    Carter RB. Descartes’ medical philosophy. The organic solution to the mind-body problem. Baltimore: Johns Hopkins University Press; 1983.Google Scholar
  30. 30.
    Tihinen PE. The transition in the treatment of the body-soul relationship: a study of Juan Huarte, Robert Burton and René Descartes. Miami University, Ph.D. Miami: U.M.I.; 1978.Google Scholar
  31. 31.
    Smith C. Descartes’ visit to the town library, or how augustinian is Descartes’ neurophysiology? J Hist Neurosci. 1998;7:93–100.CrossRefPubMedGoogle Scholar
  32. 32.
    Sebba G. Bibliographia cartesiana. Nijhof: La Haya; 1964.CrossRefGoogle Scholar
  33. 33.
    Souques A. Glande pinéale et esprits animaux, d’après Descartes. Rev Neurol. 1945;77:7–30.Google Scholar
  34. 34.
    Brazier MAB. A history of neurophysiology in the l7th and l8th centuries. From concept to experiment. Nueva York: Raven; 1984.Google Scholar
  35. 35.
    Souques A. Descartes et l’anatomo-physiologie du systéme nerveux. Rev Neurol. 1938;70:221–45.Google Scholar
  36. 36.
    Descartes R. El Tratado del Hombre. Traducción y Comentarios de G. Quintas. Madrid: Alianza Editorial, S.A.; 1990.Google Scholar
  37. 37.
    López-Muñoz F, Alamo C. “El Tratado del Hombre”: interpretación cartesiana de la neurofisiología del dolor. Asclepio Rev Hist Med Cienc. 2000;52:239–67.Google Scholar
  38. 38.
    Foster M. Lectures on the history of physiology during the sixteenth, seventeenth and eighteenth centuries. Cambridge: Cambridge University Press; 1924.Google Scholar
  39. 39.
    López-Muñoz F, Alamo C. Aproximación cartesiana a la etiopatogenia de la melancolía: el papel modulador de la glándula pineal sobre las pasiones del alma. EduPsykhé Rev Psicol Educ. 2010;9:189–220.Google Scholar
  40. 40.
    López-Muñoz F, Alamo C. Cartesian theories on the passions, the pineal gland and the pathogenesis of affective disorders: an early forerunner. Psychol Med. 2011;41:449–51.CrossRefPubMedGoogle Scholar
  41. 41.
    López-Muñoz F, Rubio G, Molina JD, Alamo C. Sadness as a passion of the soul: a psychopathological consideration of the Cartesian concept of melancholy. Brain Res Bull. 2011;85:42–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Descartes R. Discurso del Método. Tratado de las Pasiones del Alma. Introducción de M.A. Granada y traducción y notas de E. Frutos. Barcelona: Editorial Planeta S.A.; 1989.Google Scholar
  43. 43.
    Finger S. Descartes and the pineal gland in animals: a frequent misinterpretation. J Hist Neurosci. 1995;4(3–4):166–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Gaukroger S. Descartes: an intellectual biography. New York: Oxford University Press; 1995.Google Scholar
  45. 45.
    Clarke E, O’Malley CD. The human brain and spinal cord. Berkeley: University of California Press; 1968.Google Scholar
  46. 46.
    Voss S. Essays on the philosophy of science of René Descartes. New York: Oxford University Press; 1993.CrossRefGoogle Scholar
  47. 47.
    Scherz G. Steno and brain research in the seventeenth century. Oxford: Pergamon Press; 1968.Google Scholar
  48. 48.
    Altschule MD. Origins of concepts in human behaviour, social and cultural factors. New York: Wiley; 1979. p. 174.Google Scholar
  49. 49.
    Le Cat CN. Traité du fluide des nerfs. Berlin: N.P.; 1765.Google Scholar
  50. 50.
    Jourdan AJL. Dictionnaire des sciences médicales. Paris: Panckouke. 1820;42:460–1.Google Scholar
  51. 51.
    Cardinali DP. Glándula Pineal. In: Schiaffini O, editor. Neuroendocrinología. Barcelona: Salvat Editores, S.A; 1985. p. 309.Google Scholar
  52. 52.
    Goette A. Die Entwicklungsgeschichte der Unke (Bombinator igneus) als Grundlage einer vergleichenden Morphologie der Wirbelthiere, Mit einem Atlas von 22 Tafeln. Leipzig: Voss; 1875.CrossRefGoogle Scholar
  53. 53.
    Studnicka F. Die Parietalorgane. In: Oppel A, editor. Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbelthiere, vol. 5. Jena: Fischer; 1905. p. 1–254.Google Scholar
  54. 54.
    Bizzozero G. Sul parenquima della ghiandola pineale, vol. I. Milan: R Ist Lombardo Sci Lett; 1868.Google Scholar
  55. 55.
    Galasescu P, Urechia CJ. Les cellules acidophiles de la glande pinéale. C R Soc Biol (Paris). 1910;68:623–4.Google Scholar
  56. 56.
    Mihalkowicz V. Entwickelung der Zirbeldrüse. Zentralbl F D Med Wissensch. 1974;17:12.Google Scholar
  57. 57.
    Henle FGJ. Handbuch der systematischen Anatomie des Menschen, Nervenlehre, vol. III. Braunschweig: Friedrich Vieweg; 1871.Google Scholar
  58. 58.
    Verne J. Contibution à l’étude des cellules névroliques, spécialement au point de vue de leur activité formatrice. Arch Anat Microscop. 1914;16:157–69.Google Scholar
  59. 59.
    López-Muñoz F, Boya J, Calvo JL. La aportación de la Escuela Española de Histología al conocimiento morfológico de la glándula pineal. Arch Neurobiol. 1994;57:225–34.Google Scholar
  60. 60.
    Cajal SR. Textura del sistema nervioso del hombre y de los vertebrados. Madrid: Editorial Moya; 1904.Google Scholar
  61. 61.
    Achucarro N. La estructura secretora de la glándula pineal humana. Bol Soc Esp Biol. 1913;2:83–8.Google Scholar
  62. 62.
    Río-Hortega P. Constitución histológica de la glándula pineal. I. Células parenquimatosas. Libro en honor de D. Santiago Ramón y Cajal, Trabajos originales de sus admiradores y discípulos extranjeros y nacionales. Madrid: JAE; 1922. p. 359–89.Google Scholar
  63. 63.
    Río-Hortega P. Pineal gland. In: Penfield W, editor. Cytology and cellular pathology on the nervous system, vol. 2. New York: Harper (Hoeber); 1932. p. 635–703.Google Scholar
  64. 64.
    Calvo J, Boya J, Borregón A, García-Mauriño JE. Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study. Anat Rec. 1988;220:424–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Korf H-W, Moller M, Gery I, et al. Immunohistochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tiss Res. 1985;239:81–5.CrossRefGoogle Scholar
  66. 66.
    López-Muñoz F, Calvo JL, Boya J, Carbonell AL. Coexpression of vimentin and glial fibrillary acidic protein in glial cells of the adult rat pineal gland. J Pineal Res. 1992;12:145–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Lowenthal A, Flament-Durand J, Karcher D, et al. Glial cells identified by anti-α-albumin (anti-GFA) in human pineal gland. J Neurochem. 1982;38:863–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Moller M, Ingild A, Bock E. Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res. 1978;140:1–13.CrossRefPubMedGoogle Scholar
  69. 69.
    Dimitrova Z. Recherches sur la structure de la glande pinéale chez quelques mammiferes. Névraxe. 1901;2:259–321.Google Scholar
  70. 70.
    Gutzeit R. Ein Teratom der Zirbeldrüse. Doctoral Thesis. University of Königsberg; 1896.Google Scholar
  71. 71.
    Heubner O. Tumor der glándula pinealis. M Tsch Med Wschr. 1898;24:214.Google Scholar
  72. 72.
    Marburg O. Die klink der zirbeldrusenerkrankung. Engebn inn Med Kinderheilk. 1913;10:146–66.Google Scholar
  73. 73.
    Russell DS. The pinealoma: its relationships to the teratoma. J Path Bact. 1944;56:145–50.CrossRefGoogle Scholar
  74. 74.
    Friedman N. Germinoma of the pineal. Its identity with germinoma (‘seminoma’) of the testis /dysgerminoma, ovary). Cancer Res. 1947;7:363–8.PubMedGoogle Scholar
  75. 75.
    Foa C. Hipertrophie des testicules et de la crete, apres extirpation de la glande pinéale chez le coq. Arch Ital Biol. 1912;57:233–52.Google Scholar
  76. 76.
    Berkeley W. The use of pineal gland in the treatment of certain classes of defective children. Med Rec. 1914;85:513–5.Google Scholar
  77. 77.
    Becker WJ. Epiglandol bei dementia praecox. Ther Halbmonatschr. 1920;34:667–8.Google Scholar
  78. 78.
    Boie D. Das Erste Auge. Ein Bild des Zirbelorgans aus Naturwissenschaft, Anthroposophie, Geschichte und Medizin. Sttutgart: Freies Geistesleben; 1968. p. 14–64.Google Scholar
  79. 79.
    Fiske VM, Bryant GK, Putnam J. Effect of light in the weight of the pineal in the rat. Endocrinology. 1960;66:489–91.CrossRefGoogle Scholar
  80. 80.
    Hoffman RA, Reiter RJ. Rapid pinealectomy in hamsters and other small rodents. Anat Rec. 1965;153:19–22.CrossRefPubMedGoogle Scholar
  81. 81.
    Quay WB. Photic modification of mammalian pineal weight and composition and its anatomical basis. Anat Rec. 1961;139:265–6.Google Scholar
  82. 82.
    Wurtman RJ, Roth W, Altschule MD, Wurtman JJ. Interactions of the pineal and exposure to continuous light on organ weights of female rats. Acta Endocrinol (Kbh). 1961;36:617–24.Google Scholar
  83. 83.
    Brainard GC. Pinel research: the decade of transformation. J Neural Transm. 1978;13:3–10.Google Scholar
  84. 84.
    Wurtman RJ, Axelrod J. The pineal gland. Sci Am. 1965;213:50–60.CrossRefPubMedGoogle Scholar
  85. 85.
    McCord C, Allen F. Evidences associating pineal gland function with alternations in pigmentation. J Exper Zool. 1917;23:207–24.CrossRefGoogle Scholar
  86. 86.
    Lerner AB, Case JD, Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80:2587.CrossRefGoogle Scholar
  87. 87.
    Karasek M. Melatonin in humans. Where we are 40 years after its discovery. Neuroendocrinol Lett. 1999;20:179–88.PubMedGoogle Scholar
  88. 88.
    Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science. 1960;131:1312.CrossRefPubMedGoogle Scholar
  89. 89.
    Quay WB. Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol. 1963;3:473–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Wurtman RJ, Axelrod J, Philips LS. Melatonin synthesis in the pineal gland: control by light. Science. 1963;142:1071–3.CrossRefPubMedGoogle Scholar
  91. 91.
    Wurtman RJ, Axelrod J, Fischer JE. Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science. 1964;143:1328–30.CrossRefGoogle Scholar
  92. 92.
    Ariëns-Kappers JA. The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch. 1960;52:163–215.CrossRefGoogle Scholar
  93. 93.
    Lerner A. Hormones and skin color. Sci Am. 1961;205:98–108.CrossRefPubMedGoogle Scholar
  94. 94.
    Deguchi T, Axelrod J. Control of circadian change of serotonin N-acetyltransferase activity in the pineal organ by the ß-adrenergic receptor. Proc Natl Acad Sci U S A. 1972;68:3106–9.Google Scholar
  95. 95.
    Klein DC, Weller JL, Moore RY. Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyltransferase activity. Proc Nat Acad Sci (Wash). 1971;68:3107–10.CrossRefGoogle Scholar
  96. 96.
    Moore RY, Klein DC. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 1974;71:17–33.CrossRefPubMedGoogle Scholar
  97. 97.
    Arendt A. Melatonin and the mammalian pineal gland. London: Chapman & Hall; 1995.Google Scholar
  98. 98.
    Webb S, Puig-Domingo M. Role of melatonin in health and disease. Clin Endocrinol. 1995;42:221–34.CrossRefGoogle Scholar
  99. 99.
    Dubocovich ML. Pharmacology and function of melatonin receptors. FASEB J. 1988;2:2765–33.PubMedGoogle Scholar
  100. 100.
    Dubocovich M, Takahashi J. Use of 2-[125I]-iodomelatonin to characterize melatonin binding sites in chicken retina. Proc Natl Acad Sci U S A. 1987;84:3916–20.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Guardiola-Lemaitre B. Agonistes et antagonistes des récepteurs mélatoninergiques: effets pharmacologiques et perspectives thérapeutiques. Ann Pharm Fr. 2005;63:385–400.CrossRefPubMedGoogle Scholar
  102. 102.
    Sugden D, Davidson K, Hough KA, Teh MT. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 2004;17:454–60.CrossRefPubMedGoogle Scholar
  103. 103.
    Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci. 1995;16:50–6.CrossRefPubMedGoogle Scholar
  104. 104.
    Krause DN, Dubocovich ML. Regulatory sites in the melatonin system of mammals. Trends Neurosci. 1990;13:464–70.CrossRefPubMedGoogle Scholar
  105. 105.
    Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24:101–46.CrossRefPubMedGoogle Scholar
  106. 106.
    Reppert SM, Weaver DR, Godson C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci. 1996;17:100–2.CrossRefPubMedGoogle Scholar
  107. 107.
    López-Muñoz F, Boya J, Marín F, Calvo JL. Scientific research on the pineal gland and melatonin: a bibliometric study for the period 1966–1994. J Pineal Res. 1996;20:115–24.CrossRefPubMedGoogle Scholar
  108. 108.
    Korf H, Schomerus C, Stehle J. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Berlín: Springer; 1998.CrossRefGoogle Scholar
  109. 109.
    Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25:177–95.CrossRefPubMedGoogle Scholar
  110. 110.
    Wurtman RJ, Axelrod J, Kelly DE. The pineal. New York: Academic; 1968.Google Scholar
  111. 111.
    Ariëns-Kappers J. Localization of indoleamine and protein synthesis in the mammalian pineal gland. J Neural Transm. 1978;13(Suppl):13–24.Google Scholar
  112. 112.
    Cardinali DP. Melatonin. A mammalian pineal hormone. Endocrinol Rev. 1981;2:327–46.CrossRefGoogle Scholar
  113. 113.
    Oksche A, Hartwig HG. Pineal sense organs components of photoneuroendocrine systems. Prog Brain Res. 1979;52:113–30.CrossRefPubMedGoogle Scholar
  114. 114.
    Delay J. Introducción a la medicina psicosomática. Barcelona: Toray-Masson, S.A.; 1965. p. 15–6.Google Scholar
  115. 115.
    Moore RY. The innervation of the mammalian pineal gland. Prog Reprod Biol. 1978;4:1–29.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Francisco López-Muñoz
    • 1
    • 2
    • 3
  • Fernando Marín
    • 4
  • Cecilio Álamo
    • 5
  1. 1.Faculty of Health SciencesCamilo José Cela UniversityMadridSpain
  2. 2.Neuropsychopharmacology UnitHospital 12 de Octubre Research Institute (i+12)MadridSpain
  3. 3.Portucalense Institute of Neuropsychology and Cognitive and Behavioural NeurosciencesPortucalense UniversityPortoPortugal
  4. 4.Department of Cellular Biology, Faculty of MedicineComplutense UniversityMadridSpain
  5. 5.Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health SciencesUniversity of AlcaláMadridSpain

Personalised recommendations