Ethnic Fermented Foods and Alcoholic Beverages of Japan

  • Yoshiaki Kitamura
  • Ken-Ichi Kusumoto
  • Tetsuya Oguma
  • Toshiro Nagai
  • Soichi Furukawa
  • Chise Suzuki
  • Masataka Satomi
  • Yukio Magariyama
  • Kazunori Takamine
  • Hisanori Tamaki


Japanese traditional fermented foods are centerpieces of taste of Washoku cuisine which was added to UNESCO’s Intangible Cultural Heritage list in 2013. Miso is fermented soybean paste. It is used for every day’s miso soup and as a seasoning in many kinds of cooking. Shoyu – soy sauce – is a liquid-type seasoning made of soybeans, wheat, koji, and salt water. Natto is soybeans fermented with Bacillus, with sticky but tasty γ-polyglutamic acid. Su is a traditional vinegar of cereal or fruit. Rice vinegar which is usually made directly from rice and rice koji is the most popular in Japan. Tsukemono is pickled vegetables, of which the traditional one is fermented with lactic acid bacteria. Tsukemono is usually served daily as a side dish with boiled rice. A variety of fermented seafoods, salted type (gyoshyo, shiokara, kusaya), pickled type (nare-zushi, nuka-zuke), and molded type (fushi) are also developed. The last one “fushi” is an indispensable ingredient in Japanese cuisine. Two kinds of alcoholic beverages, famous sake (rice wine) and shochu (spirits), are also important gifts of fermentation. The outline, including information of microbes, preparation methods and functionality and health benefits, of these traditional fermented foods and beverages popular in Japan are introduced.


Lactic Acid Bacterium Rice Straw Rice Bran Crucian Carp Fish Sauce 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ameyama, M., & Ohtsuka, S. (1990). Science of vinegar. Tokyo: Asakura-Shoten (in Japanese).Google Scholar
  2. Ashiuchi, M., Soda, K., & Misono, H. (1999). A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: Gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochemical and Biophysical Research Communications, 263, 6–12.CrossRefGoogle Scholar
  3. Brewing Society of Japan. (1991). Manufacturing technology of Honkaku Shochu (pp. 28–29). Tokyo: Brewing Society of Japan. in Japanese.Google Scholar
  4. Brewing Society of Japan. (2006). The national microbe of Japan. Accessed 31 Mar 2015 (in Japanese).
  5. Dicks, L. M. T., Holzapfel, W. H., Satomi, M., Kimura, B., & Fujii, T. (2009). Genus Tetragenococcus. In P. Vos, G. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K.-H. Schleifer, & W. Whitman (Eds.), Bergey’s manual of systematic bacteriology (Vol. 3, pp. 611–616). New York: Springer.Google Scholar
  6. Endo, A., Mizuno, H., & Okada, S. (2008). Monitoring the bacterial community during fermentation of sunki, an unsalted, fermented vegetable traditional to the Kiso area of Japan. Letters in Applied Microbiology, 47, 221–226. doi: 10.1111/j.1472-765X.2008.02404.x. LAM2404 [pii].CrossRefGoogle Scholar
  7. Entani, E. (2001). Vinegar. In M. Yamasaki (Ed.), Hakko handbook (pp. 599–604). Tokyo: Kyoritsu Shuppan (in Japanese).Google Scholar
  8. Entani, E., & Masai, H. (1985a). Identification of yeast, lactic acid bacteria and acetic acid bacteria isolated from fermented mash of Fukuyama rice vinegar. Journal of the Brewing Society of Japan, 80, 200–205 (in Japanese).CrossRefGoogle Scholar
  9. Entani, E., & Masai, H. (1985b). Changes in flavor components and microbial flora during Fukuyama rice vinegar manufacture. Hakko Kogaku Kaishi, 63, 211–220 (in Japanese).Google Scholar
  10. Food Balance Sheet. (2014). Ministry of Agriculture, Forestry and Fisheries. Accessed 31, Oct 2015 (in Japanese).
  11. Fujii, T. (1992). Shiokara, Kusaya, and Katsuobushi. Tokyo: Koseishakoseikaku (in Japanese).Google Scholar
  12. Fujii, T., Takaoka, Y., & Okuzumi, M. (1990). Occurrence and survival of indicator/pathogenic bacteria in kusaya gravy. Letters in Applied Microbiology, 11, 116–118.CrossRefGoogle Scholar
  13. Fujii, T., Matsubara, M., Itoh, Y., & Okuzumi, M. (1994). Microbial contribution on ripening squid Shiokara. Nippon Suisan Gakkaishi, 60, 265–270 (in Japanese).CrossRefGoogle Scholar
  14. Fukai, Y., & Tukada, K. (2007). Physical quality characteristics of a fast-brewed ‘Nukadoko’ pickle -study on quality characteristics of ‘Nukadoko’ pickle- (Part 1). Journal of Cookery Science of Japan, 40(1), 22–26 (in Japanese).Google Scholar
  15. Fukuda, Y., Yamazawa, N., & Okazaki, E. (2005). Japanese marine products. Tokyo: Kourin (in Japanese).Google Scholar
  16. Fukui, Y., Yoshida, M., Shozen, K., Funatsu, Y., Takano, T., Oikawa, H., Yano, Y., & Satomi, M. (2012). Bacterial communities in fish sauce mash culture-dependent and -independent methods. Journal of General Applied Microbiology, 58, 271–281.CrossRefGoogle Scholar
  17. Funatsu, Y. (2013). Development of reuse techniques for by-products from fish gel and Kamaboko. Aqua Net, 16, 34–38 (in Japanese).Google Scholar
  18. Funatsu, Y., Sunago, R., Konagaya, S., Imai, T., Kawasaki, K., & Takeshima, F. (2000). A comparison of extractive components of a fish sauce prepared from frigate mackerel using soy sauce koji with those of Japanese-made fish sauce and soy sauce. Nippon Suisan Gakkaishi, 66, 1036–1045 (in Japanese).CrossRefGoogle Scholar
  19. Furukawa, S., & Katakura, Y. (2012). Coexistence and symbiosis between lactic acid bacteria and yeast. Seibutsu-kogaku Kaishi, 90, 188–191 (in Japanese).Google Scholar
  20. Furukawa, S., Abe, A., Fukase, S., Hirayama, S., Ogihara, H., & Morinaga, Y. (2008a). Bioproduction using mixed-species biofilm. Journal of the Brewing Society of Japan, 107, 292–299 (in Japanese).Google Scholar
  21. Furukawa, S., Date, H., & Date, T. (2008b). The route taken by Fukuyama vinegar. Studies in Human Science, 5, 298–315 (in Japanese).Google Scholar
  22. Furukawa, S., Watanabe, T., Toyama, H., & Morinaga, Y. (2013). Significance of microbial symbiotic coexistence in traditional fermentation. Journal of Bioscience and Bioengineering, 116, 533–539.CrossRefGoogle Scholar
  23. Furukawa, S., Hirayama, S., & Morinaga, Y. (2014). Microbial symbiotic coexistence and traditional fermentation. Journal of the Brewing Society of Japan, 109, 228–238 (in Japanese).Google Scholar
  24. Haruta, S., Ueno, S., Egawa, I., Hashiguchi, K., Fujii, A., Nagano, M., Ishii, M., & Igarashi, Y. (2006). Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 109, 79–87.CrossRefGoogle Scholar
  25. Hayashi, K. (1988). Soy sauces in the world. In T. Tochikura (Ed.), Shoyu no Kagaku to Gijutsu (pp. 506–520). Tokyo: Brewing Society of Japan. in Japanese.Google Scholar
  26. Higashi, K. (1981). Brewing of Fukuyama rice vinegar. Journal of the Brewing Society of Japan, 76, 456–458 (in Japanese).CrossRefGoogle Scholar
  27. Higashikawa, F., Noda, M., Awaya, T., Nomura, K., Oku, H., & Sugiyama, M. (2010). Improvement of constipation and liver function by plant-derived lactic acid bacteria: A double-blind, randomized trial. Nutrition, 26(4), 367–374. doi: 10.1016/j.nut.2009.05.008. S0899-9007(09)00229-9 [pii].CrossRefGoogle Scholar
  28. Hong, S. B., Lee, M., Kim, D. H., Varga, J., Frisvad, J. C., Perrone, G., Gomi, K., Yamada, O., Machida, M., Houbraken, J., & Samson, R. A. (2013). Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS ONE, 8, 1–9. doi: 10.1371/journal.pone.0063769.CrossRefGoogle Scholar
  29. Hosoi, T., Ametani, A., Kiuchi, K., & Kaminogawa, S. (1999). Changes in fecal microflora induced by intubation of mice with Bacillus subtilis (natto) spores are dependent upon dietary components. Canadian Journal of Microbiology, 45, 59–66.CrossRefGoogle Scholar
  30. Imai, S. (2009). Miso as fermented food. In Japanese Kanzume Gijutu Kenkyukai (Ed.), Application of microorganisms and enzymes in food processing for traditional food (pp. 28–35). Tokyo: Nippon Shokuryo Shinbunsha. in Japanese.Google Scholar
  31. Imayasu, S. (1999). Effectiveness of sake on your health and beauty. Journal of the Brewing Society of Japan, 94, 110–115 (in Japanese).CrossRefGoogle Scholar
  32. Imayasu, S., & Kawato, A. (1999a). Effectiveness of sake on your health and beauty (the second). Journal of the Brewing Society of Japan, 94, 201–208 (in Japanese).CrossRefGoogle Scholar
  33. Imayasu, S., & Kawato, A. (1999b). Effectiveness of sake on your health and beauty (the third). Journal of the Brewing Society of Japan, 94, 274–280 (in Japanese).CrossRefGoogle Scholar
  34. Irisawa, T., Tanaka, N., Kitahara, M., Sakamoto, M., Ohkuma, M., & Okada, S. (2014). Lactobacillus furfuricola sp. nov., isolated from Nukadoko, rice bran paste for Japanese pickles. International Journal of Systematic and Evolutionary Microbiology, 64, 2902–2906. doi:ijs.0.063933-0 [pii]  10.1099/ijs.0.063933-0.CrossRefGoogle Scholar
  35. Ishige, N., & Ruddle, K. (1990). Gyosho in Southeast Asia: In A study of fermented aquatic products. Tokyo: Iwanami (in Japanese).Google Scholar
  36. Ishikawa, T. (2002). Sake. In K. Yoshizawa, T. Ishikawa, M. Tadenuma, M. Nagasawa, & K. Nagami (Eds.), Encyclopedia of brewing and fermented foods (pp. 210–243). Tokyo: Asakura-Shoten. in Japanese.Google Scholar
  37. Japan Federation of Miso Manufacturers Corporation. (2014a). Consumption of the soybean for food according to the usage. Accessed 31 Nov (in Japanese).
  38. Japan Federation of Miso Manufacturers Corporation. (2014b). The number of the shipment according to the kind of miso. Accessed 31 Nov (in Japanese).
  39. Japan Soy Sauce Association. (2012). Chapter 8; soy sauces, its internationalization. In Y. Kubota, N. Munakata, & H. Tachi (Eds.), Shoyu no fushigi (pp. 154–171). Tokyo: Japan Soy Sauce Association. (in Japanese).Google Scholar
  40. Jyokai Times. (2015). Shipped amounts of sake and shochu. Osaka: Jyokai Times. (in Japanese).Google Scholar
  41. Kagoshima prefecture sake brewers cooperative. (1940). Review of Satsuma shochu. p. 124. Kagoshima prefecture (in Japanese).Google Scholar
  42. Kamiwatari, T., Setoguchi, S., Takamine, K., & Ogata, S. (2005). Content of mono-terpene alcohols in stressed sweet potatoes and flavor property of imo-shochu. Journal of the Brewing Society of Japan, 100, 520–526 (in Japanese).CrossRefGoogle Scholar
  43. Kanie, M. (1990). In M. Kanie & S.Ohtsuka (Eds.) Black vinegar in Fukuyama. Tokyo: Rural Culture Association Japan (in Japanese).Google Scholar
  44. Karki, T., & Itoh, H. (1988). Improvement of unsalted fermented vegetables. Kagaku To Seibutsu, 26(5), 325–329 (in Japanese).CrossRefGoogle Scholar
  45. Kasahara, K., & Nishibori, N. (1986). Volatile components of radish pickles fermented after smoking. Science of Cookery, 19, 200–203 (in Japanese).Google Scholar
  46. Kato, S., Kitamura, E., & Ohshima, S. (1991). Factors influencing the growth of Debaryomyces hansenii and Saccharomyces servazzii isolated from salted “daikon” (Japanese radish). Japanese Society for Food Science and Technology, 38, 357–359.CrossRefGoogle Scholar
  47. Kato, K., Toh, H., Sakamoto, N., Mori, K., Tashiro, K., Hibi, N., Sonomoto, K., & Nakayama, J. (2014). Draft genome sequence of Lactobacillus namurensis Chizuka 01, isolated from Nukadoko, a pickling bed of fermented rice bran. Genome Announcement, 2(1), e01263–13. doi:2/1/e01263-13 [pii]  10.1128/genomeA.01263-13.CrossRefGoogle Scholar
  48. Kawahara, T., & Otani, H. (2006). Stimulatory effect of lactic acid bacteria from commercially available Nozawana-zuke pickle on cytokine expression by mouse spleen cells. Bioscience Biotechnology and Biochemistry, 70, 411–417. doi: 10.1271/bbb.70.411. doi:JST.JSTAGE/bbb/70.411 [pii].CrossRefGoogle Scholar
  49. Kayashima, S., Hamada, Y., Yonemoto, T., & Sameshima, Y. (1991). Manufacturing technology of Honkaku Shochu. In N. Nishiya (Ed.), Brewing Society of Japan (pp. 124–139). Tokyo: Shin-nihon Press. in Japanese.Google Scholar
  50. Kim, J. Y., Gum, S. N., Paik, J. K., Lim, H. H., Kim, K.-C., Ogasawara, K., Inoue, K., Park, S., Jang, Y., & Lee, J. H. (2008). Effects of Nattokinase on blood pressure: A randomized, controlled trial. Hypertension Research, 31, 1583–1588.CrossRefGoogle Scholar
  51. Kishi, M., Fukaya, M., Tsukamoto, Y., Nagasawa, T., Takehana, K., & Nishizawa, N. (1999). Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectimized rats. Bioscience Biotechnology and Biochemistry, 63, 905–910.CrossRefGoogle Scholar
  52. Kobayashi, K., Okuzumi, M., & Fujii, T. (1995). Microflora of fermented puffer fish ovaries in rice-bran “fugunoko nukazuke”. Fisheries Science, 61, 291–295.Google Scholar
  53. Koizumi, T. (2000). Tsukemono Taizen (The complete Tsukemono). Tokyo: Heibonsha (in Japanese).Google Scholar
  54. Koizumi, Y., Uehara, Y., & Yanagida, F. (1987). The general composition, inorganic cations, free amino acids and organic acids of special vinegars. Nippon Shokuhin Kogyo Gakkaishi, 34, 592–597 (in Japanese).CrossRefGoogle Scholar
  55. Koizumi, Y., Tsuzuki, J., Nakamura, Y., & Yanagida, F. (1988). Role of floating koji on the manufacturing process of pot vinegar. Nippon Shokuhin Kogyo Gakkaishi, 35, 670–677 (in Japanese).CrossRefGoogle Scholar
  56. Koizumi, Y., Hashiguchi, K., Okamoto, A., & Yanagida, F. (1996). Identification of lactic acid bacteria, yeasts and acetic acid bacteria isolated during manufacturing process of pot vinegar. Nippon Shokuhin Kagaku Kogaku Kaishi, 43, 347–356 (in Japanese).CrossRefGoogle Scholar
  57. Kondo, T., Kishi, M., Fushimi, T., Ugajin, S., & Kaga, T. (2009). Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Bioscience Biotechnology and Biochemistry, 73, 1837–1843.CrossRefGoogle Scholar
  58. Kosaka, Y., & Ooizumi, T. (2012). Effects of microbial growth inhibition by antibiotics on the production of taste-active components during the processing of Heshiko produced by aging salted mackerel with rice bran. Fisheries Science, 78, 735–742.CrossRefGoogle Scholar
  59. Kosaka, Y., Satomi, M., Furutani, A., & Ooizumi, T. (2012). Microfloral and chemical changes during processing of heshiko produced by aging of salted mackerel with rice bran by means of conventional practice in Wakasa Bay area, Fukui, Japan. Fisheries Science, 78, 485–490.CrossRefGoogle Scholar
  60. Kudo, T. (1990). Warfarin antagonism of natto and increase in serum vitamin K by intake of natto. Artery, 17, 189–201.Google Scholar
  61. Kudo, Y., Oki, K., & Watanabe, K. (2012). Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 11), 2643–2649. doi:ijs.0.037051-0 [pii]  10.1099/ijs.0.037051-0.CrossRefGoogle Scholar
  62. Kusumoto, K., Yabe, K., Nogata, Y., & Ohta, H. (1998). Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic gene ver-1. Applied Microbiology and Biotechnology, 50, 98–104.CrossRefGoogle Scholar
  63. Kusumoto, K., Nogata, Y., & Ohta, H. (2000). Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Current Genetics, 37, 104–111.CrossRefGoogle Scholar
  64. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O., Kashiwagi, Y., Abe, K., Gomi, K., Horiuchi, H., Kitamoto, K., Kobayashi, T., Takeuchi, M., Denning, D. W., Galagan, J. E., Nierman, W. C., Yu, J., Archer, D. B., Bennett, J. W., Bhatnagar, D., Cleveland, T. E., Fedorova, N. D., Gotoh, O., Horikawa, H., Hosoyama, A., Ichinomiya, M., Igarashi, R., Iwashita, K., Juvvadi, P. R., Kato, M., Kato, Y., Kin, T., Kokubun, A., Maeda, H., Maeyama, N., Maruyama, J., Nagasaki, H., Nakajima, T., Oda, K., Okada, K., Paulsen, I., Sakamoto, K., Sawano, T., Takahashi, M., Takase, K., Terabayashi, Y., Wortman, J. R., Yamada, O., Yamagata, Y., Anazawa, H., Hata, Y., Koide, Y., Komori, T., Koyama, Y., Minetoki, T., Suharnan, S., Tanaka, A., Isono, K., Kuhara, S., Ogasawara, N., & Kikuchi, H. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438(7071), 1157–1161.CrossRefGoogle Scholar
  65. Matsuoka, H., Takahashi, A., Ozawa, Y., Yamada, Y., Uda, Y., & Kawakishi, S. (2002). 2-[3-(2-Thioxopyrrolidin-3-ylidene)methyl-tryptophan, a novel yellow pigment in salted radish roots. Bioscience Biotechnology and Biochemistry, 66(7), 1450–1454. doi: 10.1271/bbb.66.1450.CrossRefGoogle Scholar
  66. Matsuoka, H., Honzawa, S., Takahashi, A., Yoshikawa, H., Watanabe, E., Watanabe, T., Ozawa, Y., Yamada, Y., Iizuka, T., & Uda, Y. (2008). Photoisomerization of 2-[3-(2-thioxopyrrolidin-3-ylidene)methyl]-tryptophan, a yellow pigment in salted radish roots. Bioscience Biotechnology and Biochemistry, 72(9), 2262–2268. doi: 10.1271/bbb.80092. doi:JST.JSTAGE/bbb/80092 [pii].CrossRefGoogle Scholar
  67. Matsushima, K., Yashiro, K., Hanya, Y., Abe, K., Yabe, K., & Hamasaki, T. (2001). Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Applied Microbiology and Biotechnology, 55, 771–776.CrossRefGoogle Scholar
  68. Ministry of Agriculture, Forestry and Fisheries, Japan. (2012). Fish processing statistical survey. Japan: Ministry of Agriculture, Forestry and Fisheries. in Japanese.Google Scholar
  69. Ministry of Agriculture, Forestry and Fisheries, Japan. (2014). Soy sauce’s Japanese agricultural standard. Accessed 31 Mar 2015 (in Japanese).
  70. Ministry of Education, Culture, Sports, Science and Technology, Japan. (2014). Food composition database. Accessed 23 Feb 2015 (in Japanese).
  71. Miura, T., & Nakano, T. (1985). Chemical and physical characteristics of “Iburi-takuanzuke” (smoked and pickled radishes). Bulletin of the Akita Prefectural Collage of Agriculture, 11, 57–64 (in Japanese).Google Scholar
  72. Miyao, S. (2002). Japanese pickles “Tsukemono”. Japanese Journal of Lactic Acid Bacteria, 13(1), 2–22 (in Japanese).CrossRefGoogle Scholar
  73. Miyoshi, H. (1982). Changes in texture of brined vegetables and prevention of their softening in misozuke. Nippon Shokuhin Kogyo Gakkaishi, 29, 582–586 (in Japanese).CrossRefGoogle Scholar
  74. Nagai, T. (2015). Health benefits of natto. In J. P. Tamang (Ed.), Health benefits of fermented foods and beverages (pp. 433–453). New York: CRC Press.Google Scholar
  75. Nagai, T., & Tamang, J. P. (2010). Fermented legumes: Soybeans and non-soybean products. In J. P. Tamang & K. K. Kailasapathy (Eds.), Fermented foods and beverages of the world (pp. 191–224). New York: CRC Press.CrossRefGoogle Scholar
  76. Nagai, T., Koguchi, K., & Itoh, Y. (1997). Chemical analysis of poly-γ-glutamic acid produced by plasmid-free Bacillus subtilis (natto): Evidence that plasmids are not involved in poly-γ-glutamic acid production. Journal of Genetic Applied Microbiology, 43, 139–143.CrossRefGoogle Scholar
  77. Nakadai, T. (2006a). Enzyme production on culture condition of Shoyu koji mold. Journal of Soy Sauce Research and Technology, 32, 6–16 (in Japanese).Google Scholar
  78. Nakadai, T. (2006b). Taxonomy, non-productivity of Aflatoxin, and safety of Shoyu koji mold. Journal of Soy Sauce Research and Technology, 32, 208–220 (in Japanese).Google Scholar
  79. Nakadai, T. (2006c). Main fermentative Shoyu yeast. Journal of Soy Sauce Research and Technology, 32, 276–285 (in Japanese).Google Scholar
  80. Nakadai, T. (2007a). Ripening Shoyu yeast. Journal of Soy Sauce Research and Technology, 33, 8–20 (in Japanese).Google Scholar
  81. Nakadai, T. (2007b). Shoyu lactic acid bacteria. Journal of Soy Sauce Research and Technology, 33, 322–334 (in Japanese).Google Scholar
  82. Nakagawa, H., Mizuno, T., Shimizu, T., Kaneko, J., Kadono, M., Itoh, T., Sakai, S., & Terada, A. (2001). Lactic acid bacteria flora isolated from salted vegetables. Japanese Journal of Food Microbiology, 18(2), 61–66 (in Japanese).CrossRefGoogle Scholar
  83. Nakahara, T., Sano, A., Yamaguchi, H., Sugimoto, K., Chikata, H., Kinoshita, E., & Uchida, R. (2010). Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin 1-converting enzyme inhibitory substances. Journal of Agricultural and Food Chemistry, 58, 821–827. doi: 10.1021/jf903261h.CrossRefGoogle Scholar
  84. Nakayama, J., Hoshiko, H., Fukuda, M., Tanaka, H., Sakamoto, N., Tanaka, S., Ohue, K., Sakai, K., & Sonomoto, K. (2007). Molecular monitoring of bacterial community structure in long-aged nukadoko: Pickling bed of fermented rice bran dominated by slow-growing lactobacilli. Journal of Bioscience and Bioengineering, 104(6), 481–489. doi: 10.1263/jbb.104.481. S1389-1723(08)70007-0 [pii].CrossRefGoogle Scholar
  85. National Research Institute of Brewing. (2007). Topic of sake 10. Accessed 23 Feb 2015 (in Japanese).
  86. National Tax Agency, Japan. (2006). Guide to alcoholic beverages 2006. Accessed 23 Feb 2015 (in Japanese).
  87. National Tax Agency, Japan. (2010). Guide to alcoholic beverages 2010. Accessed 23 Feb 2015 (in Japanese).
  88. National Tax Agency, Japan. (2014). Guide to alcoholic beverages 2014. Accessed 23 Feb 2015 (in Japanese).
  89. Nomura, M., Kobayashi, M., Narita, T., Kimoto-Nira, H., & Okamoto, T. (2006). Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. Journal of Applied Microbiology, 101, 396–405. doi: 10.1111/j.1365-2672.2006.02949.x. JAM2949 [pii].CrossRefGoogle Scholar
  90. Ogihara, H., Kawarai, T., Furukawa, S., Miyao, S., & Yamazaki, M. (2009). Microfloral and chemical changes of salted pickles (Suguki) during its manufacturing process. Japanese Journal of Food Microbiology, 26, 98–106.CrossRefGoogle Scholar
  91. Okazaki, S., Furukawa, S., Ogihara, H., Kawarai, T., Kitada, C., Komenou, A., & Yamasaki, M. (2010). Microbiological and biochemical survey on the transition of fermentative processes in Fukuyama pot vinegar brewing. The Journal of General and Applied Microbiology, 56, 205–211.CrossRefGoogle Scholar
  92. Ono, H., Nishio, S., Tsurii, J., Kawamoto, T., Sonomoto, K., & Nakayama, J. (2014). Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. Journal of Bioscience and Bioengineering, 118, 520–525. doi: 10.1016/j.jbiosc.2014.04.017. S1389-1723(14)00148-0 [pii].CrossRefGoogle Scholar
  93. Ono, H., Nishio, S., Tsurii, J., Kawamoto, T., Sonomoto, K., & Nakayama, J. (2015). Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation. Bioscience of Microbiota, Food and Health, 34, 1–9. doi:10.12938/bmfh.2014-011 2014-011.CrossRefGoogle Scholar
  94. Ota, T., Ikuta, R., Nakashima, M., Morimitsu, Y., Samuta, T., & Saiki, H. (1990). Characteristic flavor of Kamho-shochu (sweet potato spirit). Agricultural and Biological Chemistry, 54, 1353–1357.Google Scholar
  95. Oyaizu, M., & Ogihara, H. (2009). Changes in the microflora and chemical properties of Hakusai asazuke (low-salt pickled Chinese cabbage) during low-temperature storage. Journal of Cookery Science of Japan, 42(5), 322–326 (in Japanese).Google Scholar
  96. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, 11, 1633–1644.CrossRefGoogle Scholar
  97. Roerecke, M., & Rehm, J. (2012). The cardioprotective association of average alcohol consumption and ischaemic heart disease: A systematic review and meta-analysis. Addiction, 107, 1246–1260.CrossRefGoogle Scholar
  98. Sakamoto, N., Tanaka, S., Sonomoto, K., & Nakayama, J. (2011). 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. International Journal of Food Microbiology, 144(3), 352–359. doi: 10.1016/j.ijfoodmicro.2010.10.017. S0168-1605(10)00569-6 [pii].CrossRefGoogle Scholar
  99. Sato, A., Ohshima, K., Noguchi, H., Ogawa, M., Takahashi, T., Oguma, T., Koyama, Y., Itoh, T., Hattori, M., & Hanya, Y. (2011). Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Research, 18, 165–176.CrossRefGoogle Scholar
  100. Satomi, M., & Fujii, T. (2014). Family Oceanospirillaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (pp. 491–527). New York: Springer.Google Scholar
  101. Satomi, M., Kimura, B., Takahashi, G., & Fujii, T. (1997). Microbial diversity in kusaya gravy. Fisheries Science, 63, 1019–1023.Google Scholar
  102. Satomi, M., Furushita, M., Oikawa, H., & Yano, Y. (2011). Diversity of plasmid encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce. International Journal of Food Microbiology, 148, 60–65.CrossRefGoogle Scholar
  103. Satomi, M., Mori-Koyanagi, M., Shozen, K., Furushita, M., Oikawa, H., & Yano, Y. (2012). Analysis of plasmids encoding histidine decarboxylase gene in Tetragenococcus muriaticus isolated from Japanese fermented seafoods. Fisheries Science, 78, 935–945.CrossRefGoogle Scholar
  104. Sawamura, S. (1906). On the micro-organisms of natto. Bulletin of the College of Agriculture, Tōkyō Imperial University, 7, 107–110 (in Japanese).Google Scholar
  105. Setoguchi, S., Unoki, T., Shimono, K., & Maeno, I. (2005). Study on manufacturing method and chemical characteristics of Yamagawazuke with Takuan. Kagoshima Kogyogijyutsu Center Research Report, 19, 11–14 (in Japanese).Google Scholar
  106. Shinagawa, H., Nishiyama, R., & Okada, S. (1996). Function of lactic acid bacteria during fermentation of Japanese pickles “Shibazuke”. Nippon Shokuhin Kagaku Kogaku Kaishi, 43, 582–585 (in Japanese).CrossRefGoogle Scholar
  107. Soy Sauce Information Center. (2014). Soy sauce pamphlet. Tokyo: Japanese Soy Sauce Information Center.Google Scholar
  108. Suezawa, Y., & Suzuki, M. (2007). Bioconversion of ferulic acid to 4-vinylguaiacol and 4-ethylguaiacol and of 4-vinylguaiacol to 4-ethylguaiacol by halotolerant yeasts belonging to the genus Canadian. Bioscience Biotechnology and Biochemistry, 71, 1058–1062.CrossRefGoogle Scholar
  109. Sumi, H. (1991). Nattokinase and fibrinolytic system. Kagaku To Seibutsu, 29, 119–123 (in Japanese).CrossRefGoogle Scholar
  110. Sumi, H. (2001). Physiological function of traditional “Shochu” and “Awamori”. Journal of the Brewing Society of Japan, 96, 513–519 (in Japanese).CrossRefGoogle Scholar
  111. Suzuki, C., Ohnishi-Kameyama, M., Sasaki, K., Murata, T., & Yoshida, M. (2006). Behavior of glucosinolates in pickling cruciferous vegetables. Journal of Agricultural and Food Chemistry, 54, 9430–9436. doi: 10.1021/jf061789l.CrossRefGoogle Scholar
  112. Suzuki, S., Honda, H., Suganuma, H., Saito, T., & Yajima, N. (2014a). Growth and bile tolerance of Lactobacillus brevis strains isolated from Japanese pickles in artificial digestive juices and contribution of cell-bound exopolysaccharide to cell aggregation. Canadian Journal of Microbiology, 60, 139–145. doi: 10.1139/cjm-2013-0774.CrossRefGoogle Scholar
  113. Suzuki, S., Kimoto-Nira, H., Suganuma, H., Suzuki, C., Saito, T., & Yajima, N. (2014b). Cellular fatty acid composition and exopolysaccharide contribute to bile tolerance in Lactobacillus brevis strains isolated from fermented Japanese pickles. Canadian Journal of Microbiology, 60, 183–191. doi: 10.1139/cjm-2014-0043.CrossRefGoogle Scholar
  114. Takahashi, H., Kimura, B., Mori, M., & Fujii, T. (2002). Analysis of bacterial communities in kusaya gravy by denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Japanese Journal Food Microbiology, 19, 179–185.CrossRefGoogle Scholar
  115. Takamine, K., Yoshizaki, Y., Shimada, S., Takaya, S., Tamaki, S., Itoh, K., & Sameshima, Y. (2011). Estimation of the mechanism for cis and trans rose oxides formation in sweet potato shochu. Journal of the Brewing Society of Japan, 106, 50–57 (in Japanese).CrossRefGoogle Scholar
  116. Takii, Y., Nishimura, S., Yoshida-Yamamoto, S., Kobayashi, Y., & Nagayoshi, E. (2013). Effects of intake of pickles containing Lactobacillus brevis on immune activity and bowel symptoms in female students. Journal of Nutritional Science and Vitaminology, 59, 402–411. doi:DN/JST.JSTAGE/jnsv/59.402 [pii].CrossRefGoogle Scholar
  117. Tayama, K. (2012). Sitology of vinegar. In Japan Society for Acetic Acid Bacteria (Ed.), Function and science of vinegar. Tokyo: Asakura-Shoten. in Japanese.Google Scholar
  118. The World Factbook. (2015). Japan. Accessed 18 Nov 2015.
  119. Ueno, Y., Hiraga, K., Mori, Y., & Oda, K. (2007). Isolation and utilization of a lactic acid bacterium, producing a high level of γ-aminobutyric acid (GABA). Seibutsu Kogaku Kaishi, 85, 109–114 (in Japanese).Google Scholar
  120. Waki, N., Matsumoto, M., Fukui, Y., & Suganuma, H. (2014). Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: An open-label pilot study. Letters in Applied Microbiology, 59, 565–571. doi: 10.1111/lam.12340.CrossRefGoogle Scholar
  121. Watanabe, S. (2009a). Functionality of Miso. In Japanese Kanzume Gijutu Kenkyukai (Ed.), Application of microorganisms and enzymes in food processing for traditional food (pp. 36–43). Tokyo: Nippon Shokuryo bun. in Japanese.Google Scholar
  122. Watanabe, S. (2009b). Introduction to natto (Natto nyumon). Tokyo: Japan Food Journal (in Japanese).Google Scholar
  123. Watanabe, H. (2013). Beneficial biological effects of miso with reference to radiation injury, cancer and hypertension. Journal of Toxicologic Pathology, 26, 91–103.CrossRefGoogle Scholar
  124. Watanabe, H., Kashimoto, N., Kajimura, J., & Kayama, K. (2006). A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats. Hypertension Research, 29, 731–738.CrossRefGoogle Scholar
  125. Watanabe, K., Fujimoto, J., Tomii, Y., Sasamoto, M., Makino, H., Kudo, Y., & Okada, S. (2009). Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 4), 754–760. doi:59/4/754 [pii]  10.1099/ijs.0.004689-0.CrossRefGoogle Scholar
  126. World Health Organization. (2014). Global status report on alcohol and health 2014. Accessed 23 Feb 2015.
  127. Yamada, S., Koizumi, A., Iso, H., Wada, Y., Watanabe, Y., Date, C., Yamamoto, A., Kikuchi, S., Inaba, Y., Toyoshima, H., Kondo, T., & Tamakoshi, A. (2003). Risk factors for fatal subarachnoid hemorrhage: The Japan Collaborative Cohort Study. Stroke, 34(12), 2781–2787. doi: 10.1161/01.STR.0000103857.13812.9A. 01.STR.0000103857.13812.9A [pii].CrossRefGoogle Scholar
  128. Yamagata, K., & Fujita, T. (1974). Characterization of salt-tolerant yeasts isolated from the pickling process of Narazuke. Hakko Kogaku Zasshi, 52, 217–224 (in Japanese).Google Scholar
  129. Yamamoto, S., Nishimura, S., Kobayashi, Y., & Takii, Y. (2011). Improvement of constipation and fecal impaction for female students by daily taking in the pickled vegetables fermented with Lactobacillus brevis subsp. coagulans containing gamma-aminobutyric acid. Food and Clinical Nutrition, 6, 9–20.Google Scholar
  130. Yamanishi, R., Huang, T., Tsuji, H., Bando, N., & Ogawa, T. (1995). Reduction of the soybean allergenicity by the fermentation with Bacillus natto. Food Science and Technology International, Tokyo, 1, 14–17.CrossRefGoogle Scholar
  131. Yamashita, M., Fujii, T., & Konagaya, S. (1991). Proteases in the fish sauce “Shottsuru” mash in fermentation. Bulletin of National Research Institute of Fisheries Science, 2, 25–31 (in Japanese).Google Scholar
  132. Yanagida, F. (1987). Vinegar in Japan. Nippon Shoyu Kenkyusho Zasshi, 13, 185–198 (in Japanese).Google Scholar
  133. Yanagida, F. (1990). Pot vinegar. Kagaku To Seibutsu, 28, 271–276 (in Japanese).CrossRefGoogle Scholar
  134. Yanagida, F. (2001). Black vinegar in Fukuyama. In M. Yamasaki (Ed.), Hakko handbook (pp. 605–606). Tokyo: Kyoritsu Shuppan. in Japanese.Google Scholar
  135. Yoshizawa, K. (2002). The history of brewing seasoning. In K. Yoshizawa, T. Ishikawa, M. Tadenuma, M. Nagasawa, & K. Nagami (Eds.), Encyclopedia of brewing and fermented foods (pp. 11–13). Tokyo: Asakura-Shoten. in Japanese.Google Scholar
  136. Zhao, X., Higashikawa, F., Noda, M., Kawamura, Y., Matoba, Y., Kumagai, T., & Sugiyama, M. (2012). The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice. PLoS ONE, 7, e30696. doi: 10.1371/journal.pone.0030696. PONE-D-11-14409 [pii].CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Yoshiaki Kitamura
    • 1
  • Ken-Ichi Kusumoto
    • 1
  • Tetsuya Oguma
    • 2
  • Toshiro Nagai
    • 3
  • Soichi Furukawa
    • 4
  • Chise Suzuki
    • 5
  • Masataka Satomi
    • 6
  • Yukio Magariyama
    • 1
  • Kazunori Takamine
    • 7
  • Hisanori Tamaki
    • 7
  1. 1.Food Research InstituteNational Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.Japan Soy Sauce Technology CenterTokyoJapan
  3. 3.Genetic Resources CenterNational Agriculture and Food Research OrganizationTsukubaJapan
  4. 4.College of Bioresource ScienceNihon UniversityFujisawaJapan
  5. 5.Institute of Livestock and Grassland ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
  6. 6.National Research Institute of Fisheries ScienceJapan Fisheries Research and Education AgencyYokohamaJapan
  7. 7.Education and Research Center for Fermentation Studies, Faculty of AgricultureKagoshima UniversityKagoshimaJapan

Personalised recommendations