Ethnic Fermented Foods and Beverages of Indonesia



Indonesia is inhabited by more than 300 ethnic groups, living scattered in around 6000 islands. Consequently, each area has cultural identities developed over centuries, such as 742 different languages and traditional foods. Preserving agricultural products by fermentation has been carried out since the early seventeenth century especially for tempe. Local and traditional wisdom show the know-how of spontaneous fermentation which is mostly involving mixed cultures including lactic acid bacteria, conducting biopreservation of perishable agricultural products. The diversity of traditional fermented foods in the center of production reflects the importance of agriculture products and culture in each area, involving microbes of Indonesian biodiversities: tempe, gembus, growol, and gatot in Java; oncom, tauco, sayur asin, and tape singkong in West Java; brem in central Java and Bali; tempoyak, terasi, and dadih in Sumatera; Mandai in Kalimantan; and tuak in North Sumatera and Nusa Tenggara.

The indigenous food popular products are existing since early history have formed an integral part of the diet and that can be prepared in the household or in cottage industry using relatively simple techniques and equipment, contribute to not only preserving the food but also improving nutritional status, serve as condiment or appetizers, and to the economic development of nonformal sector. The biodiversity of microbes involved in the traditional fermentation of foods needs to be explored more for the beneficial health and economic effect of the microbes, metabolites, or enzymes involved.


Lactic Acid Bacterium Phytic Acid Starter Culture Brine Solution Buffalo Milk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afifah, D. N., Sulchan, M., Syah, D., Yanti, & Suhartono, M. T. (2013). Proteolytic and fibrinolytic activities of several microorganisms screened from Red Oncom and Gembus, Indonesian fermented soybean cakes. Abstract No. 1.1 presented at 4th annual international symposium on wellness, healthy lifestyle and nutrition. Yogyakarta.Google Scholar
  2. Afifah, D. N., Sulchan, M., Syah, D., Yanti, Suhartono, M. T., & Kim, J. H. (2014). Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus 2.g isolated from gembus, an Indonesian fermented food. Preventive Nutrition and Food Science, 19(3), 213–219.CrossRefGoogle Scholar
  3. Afifah, D. N., Sulchana, M., Syah, D., Yanti, & Suhartono, M. T. (2015). The use of Red oncom powder as potential production media for fibrinogenolytic protease derived from Bacillus licheniformis RO3. The first international symposium on food and agro-biodiversity (ISFA2014). Procedia Food Science, 3(2015), 453–464.CrossRefGoogle Scholar
  4. Akuzawa, R., & Surono, I. S. (2002). Fermented milks of Asia. In H. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy sciences (pp. 1045–1048). London: Academic Press Ltd.CrossRefGoogle Scholar
  5. Amin, A. M., Jaafar, Z., & Khim, L. N. (2004). Effect of salt on tempoyak fermentation and sensory evaluation. Journal of Biological Sciences, 4(5), 650–653.CrossRefGoogle Scholar
  6. Antara, N. S., Sujaya, I. N., Yokota, A., Asano, K., Aryanta, W. R., & Tomita, F. (2002). Identification and succession of lactic acid bacteria during fermentation of ‘urutan’, a Balinese indigenous fermented sausage. World Journal of Microbiology and Biotechnology, 18(3), 255–262.CrossRefGoogle Scholar
  7. Antara, N. S., Sujaya, I. N., Yokota, A., Asano, K., & Tomita, F. (2004). Effects of indigenous starter cultures on the microbial and physicochemical characteristics of urutan, a Balinese fermented sausage. Journal of Bioscience and Bioengineering, 98(2), 92–98.CrossRefGoogle Scholar
  8. Aoki, H., Uda, I., Tagami, K., Furuta, Y., Endo, Y., & Fujimoto, K. (2003). The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Bioscience, Biotechnology, and Biochemistry, 67, 1018–1023.CrossRefGoogle Scholar
  9. Aryanta, W. R. (1980) Microbiological and biochemical studies of ragi and brem (rice wine) of Indonesia. MSc. Thesis, University of the Philippines at Los Banos.Google Scholar
  10. Aryanta, W. R. (1998). Utilization of lactic acid bacteria to improve the quality of Balinese traditional fermented sausage. Biotechnology for sustainable utilization of biological resources in the tropics, JSPS-NCRT/DOST/LIPI/VCC joint seminar, 3–4 Nov 1998. Manila.Google Scholar
  11. Aryanta, W. R. (2000). Traditional fermented foods in Indonesia. Japanese Journal of Lactic Acid Bacteria, 10(2), 90–102.CrossRefGoogle Scholar
  12. Ashenafi, M. (1994). Microbiological evaluation of tofu and tempeh during processing and storage. Plant Foods for Human Nutrition, 45, 183–189.CrossRefGoogle Scholar
  13. Ashenafi, M., & Busse, M. (1991). The microflora of soak water during tempeh production from various beans. Journal of Applied Bacteriology, 70, 334–338.CrossRefGoogle Scholar
  14. Astuti, M. (1994). Iron bioavailability of traditional Indonesian soybean tempe. Memoirs of Tokyo University of Agriculture, XXXV.Google Scholar
  15. Astuti, M. (1999). History of the development of Tempe. In J. Agranoff (Ed.), The complete handbook of Tempe: The unique fermented soyfood of Indonesia (pp. 2–13). Singapura: The American Soybean Association.Google Scholar
  16. Astuti, M., Meliala, A., Dalais, F. S., & Wahlqvist, M. L. (2000). Tempe, a nutritious and healthy food from Indonesia. Asia Pacific Journal of Clinical Nutrition, 9, 322–325.CrossRefGoogle Scholar
  17. Azcarate, M. A., & Todd, R. K. (2010). Genomic of lactic acid bacteria: The post-genomics challenge-from sequence to function. In F. Mozzi, R. R. Raul, & M. V. Graciela (Eds.), Biotechnology of lactic acid bacteria: Novel applications (pp. 35–56). Singapore: Wiley-Blackwell.CrossRefGoogle Scholar
  18. Basuki, T. (Ed). (1977). The less well-known fermented foodstuffs of Indonesia. In: Proceeding and symposium on indigenous fermented foods. Bangkok, 21–27 Nov 1977. GIAMI.Google Scholar
  19. Buescher, R. W., Hudson, J. M., & Adams, J. R. (1979). Inhibition of polygalacturonase softening of cucumber pickles by calcium chloride. Journal of Food Science, 44, 1786–1787.CrossRefGoogle Scholar
  20. Campbell-Platt, G. (1987). Fermented foods of the world: A dictionary and guide. London: Butterworths. 290 p.Google Scholar
  21. Chao, S. H., Ruei-Jie, W., Koichi, W., & Ying-Chieh, T. (2009). Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. lnternational Journal of Food Microbiology, 135, 203–210.CrossRefGoogle Scholar
  22. Chiou, R. Y. Y. (2004). Chinese pickles: Leaf mustard and derived products. In Y. H. Hui, M. G. Lisbeth, S. H. Ase, J. Jytee, N. Wai-Kit, S. S. Peggy, & T. Fidel (Eds.), Handbook of food and beverage fermentation technology (pp. 628–637). New York: Marcel Dekker.Google Scholar
  23. CIA. (2015). The world fact book. East and Southeast Asia: Indonesia. Retrieved 18 Dec 2015.
  24. Collado, M. C., Surono, I. S., Meriluoto, J., & Salminen, S. (2007a). Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization. Journal of Food Protection, 70(3), 700–705.Google Scholar
  25. Collado, M. C., Surono, I. S., Meriluoto, J., & Salminen, S. (2007b). Indigenous dadih lactic acid bacteria: Cell-surface properties and interactions with pathogens. Journal of Food Science, 72(3), M89–M93.CrossRefGoogle Scholar
  26. Coppola, R., Giagnacovo, B., Lorizzo, M., & Grazia, L. (1998). Characterization of lactobacilli involved in the ripening of soppressata molisana, a typical southern Italy fermented sausage. Food Microbiology, 15, 347–353.CrossRefGoogle Scholar
  27. Coppola, S., Mauriello, G., Aponte, M., Moschetti, G., & Villani, F. (2000). Microbial succession during ripening of Naplestype salami, a Southern Italian fermented sausage. Meat Science, 56, 321–329.CrossRefGoogle Scholar
  28. Crews, C., Hasnip, S., Chapman, S., Hough, P., Potter, N., Todd, J., Brereton, P., & Matthews, W. (2003). Survey of chloropropanols in soy sauces and related products purchased in the UK in 2000 and 2002. Food Additives and Contaminants, 20(10), 916–922.CrossRefGoogle Scholar
  29. Cronk, T. C., Steinkraus, K. H., Hackler, L. R., & Mattick, L. R. (1977). Indonesian tape ketan fermentation. Applied and Environmental Microbiology, 33, 1067–1073.Google Scholar
  30. Cronk, T. C., Mattick, L. R., Steinkraus, K. H., & Hackler, L. R. (1979). Production of higher alcohols during Indonesian tape ketan fermentation. Applied and Environmental Microbiology, 37, 892–896.Google Scholar
  31. Daeschel, M. A., Andersson, R. E., & Fleming, H. P. (1987). Microbial ecology of fermenting plant material. FEMS Microbiology Reviews, 46, 357–367.CrossRefGoogle Scholar
  32. Devuyst, L., & Vandemme, E. J. (1994). Antimicrobial potential of lactic acid bacteria. In: Bacteriocins of lactic acid bacteria. Google Scholar
  33. Djien, K. S. (1972). Tape fermentation. Applied Microbiology, 23, 976.Google Scholar
  34. Dougan, J., & Howard, G. E. (1975). Some flavouring constituents of fermented fish sauce. Journal of the Science of Food and Agriculture, 26, 887–894.CrossRefGoogle Scholar
  35. Egounlety, M., & Aworh, O. C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56, 249–254.CrossRefGoogle Scholar
  36. Emmawati, A. (2014). Study of antiinfection properties of lactic acid bacteria isolated from mandai. PhD Dissertation. Graduate School, Bogor Agricultural University, Indonesia.Google Scholar
  37. Emmawati, A., Jenie, B. S. L. S., Nuraida, L., & Syah, D. (2015). Characterization of Lactic Acid Bacteria Isolates from Mandai Function as Probiotic. Agritech, 35(2), May 2015. In Indonesian language.Google Scholar
  38. Expat Web Site Association. (2015). An Overview of Indonesia. Living in Indonesia, a site for expatriates. Retrieved 18 Dec 2015.Google Scholar
  39. FAO/WHO. (2004a). Codex alimentarius commission. Joint FAO/WHO Food Standards Programme Codex Committee on processed fruits and vegetables.Google Scholar
  40. FAO/WHO. (2004b). Joint FAO/WHO standards programme, Codex Committee on Processed Fruits and Vegetables. Proposed draft codex standard for soy sauce. Washington, DC, 27 Sept–1 Oct 2004.Google Scholar
  41. Fardiaz, D., & Markakis, P. (1981). Degradation of phytic acid in oncom (fermented peanut press cake). Journal of Food Science, 46(2), 523–525.CrossRefGoogle Scholar
  42. Fatimah, S. N. (1998). The Effect of solid waste of tofu, rice hull and maize hull on gembus tempe quality fermented by two Rhizopus strains. PhD Dissertation. Post Graduate Program Airlangga University. In Indonesian Language.Google Scholar
  43. Food and Health Agricultural Organization of the United Nations and World Health Organization. (2002). Guidelines for the evaluation of probiotics in food. Working group report. Washington, DC: Food and Health Agricultural Organization of the United Nations and World Health Organization.Google Scholar
  44. Fu, W. S., Zhao, Y., Zhang, G., et al. (2007). Occurrence of chloropropanols in soy sauce and other foods in China between 2002 and 2004. Food Additives and Contaminants, 24(8), 812–819.CrossRefGoogle Scholar
  45. Ganjar, I. (2000). Fermentation of the far east. In R. K. Robinson, C. A. Batt, & P. D. Patell (Eds.), Encyclopedia of food microbiology (Vol. 2, pp. 767–773). London: Academic.Google Scholar
  46. Garcia, R. A., Hotchkiss, J. H., & Steinkraus, K. H. (1999). The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media. Food Additive and Contamination, 16(2), 63–69.CrossRefGoogle Scholar
  47. Gericke, J. F. C., & Roorda, T. (1875). Javaansch-Nederduitsch Handwoordenboek [Javanese- Low German concise dictionary]. Amsterdam: Johannes Mueller. 1051 p.Google Scholar
  48. Hachmeister, K. A., & Fung, D. Y. C. (1993). Tempeh: A mold-modified indigenous fermented food made from soybeans and/or cereal grains. Critical Reviews in Microbiology, 19(3), 137–188.CrossRefGoogle Scholar
  49. Hamlet, C. G., Sadd, P. A., Crews, C., Velísek, J., & Baxter, D. E. (2002). Occurrence of 3-chloro- propane-1,2-diol (3-MCPD) and related compounds in foods: A review. Food Additives and Contaminants, 19(7), 619–631.CrossRefGoogle Scholar
  50. Hand, D. B. (1966). Soybean products for human nutrition. Research, Proc. Cornell University, Ithaca, Frontiers in Food.Google Scholar
  51. Hartanto, M. J. L. (1997) Preliminary study on natural fermented tuak during storage. Thesis undergraduate. Pharmacy Faculty, Airlangga University. In Indonesian language.Google Scholar
  52. Hassan, Z., Karim, M. I. A., & Augustin, M. A. (1986) Tapai fermentation in Malaysia. Traditional Foods and their Processing in Asia. Nodai Research Institute, Tokyo University of Agriculture.Google Scholar
  53. Heaton, J. C., & Jones, K. (2007). Microbial contamination of fruits and vegetables and the behaviour of enteropathogens in the phyllosphere. Journal of Applied Microbiology, 106(1), 704–710.Google Scholar
  54. Hermansyah, N., Sugiyama, M., & Harashima, S. (2015). Candida tropicalis isolated from Tuak, North Sumatera-Indonesian traditional beverage, for bioethanol production. Microbiology and Biotechnology Letter, 43(3), 241–248.CrossRefGoogle Scholar
  55. Hesseltine, C. W. (1965). A millennium of fungi, food, and fermentation. Mycologia, 57, 149.CrossRefGoogle Scholar
  56. Hesseltine, C. W., & Wang, H. L. (1967). Traditional fermented foods. Biotechnology and Bioengineering, 9, 275.CrossRefGoogle Scholar
  57. Hesseltine, C. W., De Camargo, R., Bradle, B., & Djien, K. S. (1963). Investigation of Tempeh, and Indonesian. Food Development and Industrial Microbiology, 4, 275.Google Scholar
  58. Heyne, K. (1913). De nuttige planten van Nederlandsch-Indië, tevens synthetische catalogus der verzamelingen van het Museum voor Technische- en Handelsbotanie te Buitenzorg [The useful plants of the Netherlands Indies. 4 vols.]. Batavia [Jakarta]:Printed by Ruygrok & Co. Vol. 2, 349 p. In Dutch language.Google Scholar
  59. Hogervorst, E., Sadjimim, T., Yesufu, A., Kreager, P., & Rahardjo, T. B. (2008). High tofu intake is associated with worse memory in elderly Indonesian men and women. Dementia and Geriatric Cognitive Disorders, 26(1), 50–57.CrossRefGoogle Scholar
  60. Hoo, C. C. (1986). Identity and characteristics of Neurospora intermedia responsible for oncom fermentation in Indonesia. Food Microbiology, 3(2), 115–132.CrossRefGoogle Scholar
  61. Hosono, A., & Tono-oka, T. (1995). Binding of cholesterol with lactic acid bacteria cells. Milchwissenschaft, 50, 556–560.Google Scholar
  62. Hosono, A., Wardoyo, R., & Otani, H. (1989). Microbial flora in “dadih”, a traditional fermented milk in Indonesia. Lebensmittel-Wissenschaft & Technologie, 22, 20–24.Google Scholar
  63. Hosono, A., Wardoyo, R., & Otani, H. (1990). Binding of amino acid pyrolyzates by lactic acid bacteria isolated from dadih. Lebensmittel-Wissenschaft & Technologie, 23, 149–153.Google Scholar
  64. Ichsyani, M. (2014). Screening of amylolytic activity of yeast and lactic acid bacteria derived from fermented cassava (Manihot esculenta Crantz) for reducing cyanide content. Undergraduate thesis. Biology Department, Gajah Mada University. In Indonesian language.Google Scholar
  65. Ikegami, S. (1977). Tuak in the Toba Batak Society: A preliminary report on the socio-cultural Aspect of Palm Wine Consumption. Annual Report of the University of Shizuoka, Hamamatsu College No.11–3, 1997, Part 5.Google Scholar
  66. Ilyas, N., Peng, A. C., & Gould, W. A. (1970). Tempeh. Find ways to preserve Indonesian soy food. Ohio Report, 55, 22.Google Scholar
  67. Imai, K., Tekeuchi, M., Sakane, T., & Ganjar, I. (1987). Bacterial flora in Dadih. IFO Research Communications, 13, 13–16.Google Scholar
  68. Indian Standard Institution. (1980). Specification of Dahi: IS: 9617. New Delhi: Bureau of Indian Standards.Google Scholar
  69. Ishige, N. (1993). Cultural aspects of fermented fish products in Asia. In C.-H. Lee, K. H. Steinkraus, & P. J. Alan Reilly (Eds.), Fish fermentation technology (pp. 13–32). Tokyo: United Nations University Press.Google Scholar
  70. Ji, F., Ji, B., Li, B., & Han, B. (2007). Microbial changes during the salting process of traditional pickled Chinese cabbage. Food Science and Technology International, 13, 11–16.CrossRefGoogle Scholar
  71. Judoamidjojo, M. (1986). The studies on Kecap – Indigenous seasoning of Indonesia. Memoirs of the Tokyo University of Agriculture, 28, 100–159.Google Scholar
  72. Judoamidjojo, M., Tirza, Z., Herastuti, S. R., Tomomatsu, A., Matsuyama, A., & Hosono, A. (1983). Chemical composition and microbiological properties of yogurt. Japanese Journal of Dairy and Food Science, 32, A7.Google Scholar
  73. Karim, M. I. A., & Hassan, Z. (1986) Traditional fermented foods of Malaysia. Traditional Foods and their Processing in Asia. Nodai Research Institute, Tokyo University of Agriculture.Google Scholar
  74. Karmini, M., Affandi, E., Hermana, Karyadi, D., & Winarno, F. G. (1997). The inhibitory effect of tempe on Escherichia coli infection. In S. Sudarmadji, S. Suparmo, & S. Raharjo (Eds.), International Tempe Symposium (pp. 157–162). Bali: Indonesian Tempe Foundation.Google Scholar
  75. Karyadi, D., & Lukito, W. (1996). Beneficial effects of tempeh in disease prevention and treatment. Nutrition Reviews, 54, S94–S98.CrossRefGoogle Scholar
  76. Karyadi, D., & Lukito, W. (2000). Functional food and contemporary nutrition-health paradigm: Tempeh and its potential beneficial effects in disease prevention and treatment. Nutrition, 16, 697.CrossRefGoogle Scholar
  77. Karyadi, D., Mahmud, M. K., & Hermana. (1990). Locally made rehabilitation foods. In R. M. Suskind & L. Lewinter-Suskind (Eds.), The malnourished child (pp. 371–381). New York: Raven.Google Scholar
  78. Kasmidjo, R. B. (1989/1990). Tempe: Microbiology and biochemistry of processing and application. Yogyakarta: Centre for Inter-University, Food and Nutrition, Gajahmada University. In Indonesian language.Google Scholar
  79. Kendo, S. (1905). Microbiological studies on the brewing of Japanese Soja-Sauce. Botanical Magazine (Tokyo), 19(216), 75–77.Google Scholar
  80. Ketsa, S., & Daengkanit, T. (1998). Physiological changes during postharvest ripening of durian fruit (Durio zibethinus Murray). Journal of Horticultural Science and Biotechnology, 73, 575–577.CrossRefGoogle Scholar
  81. Kiers, J. L., Nout, M. J. R., Rombouts, F. M., Nabuurs, M. J. A., & van der Meulen, J. (2002). Inhibition of adhesion of enterotoxigenic Escherichia coli K88 by soya bean tempe. Letters in Applied Microbiology, 35, 311–315.CrossRefGoogle Scholar
  82. Kobayasi, S. Y., Okazaki, N., & Koseki, T. (1992). Purification and characterization of an antibiotic substance produced from Rhizopus oligosporus IFO 8631. Bioscience, Biotechnology, and Biochemistry, 56, 94–98.CrossRefGoogle Scholar
  83. Kuswanto, K. R. (2004). Industrialization of Tempe production. In K. H. Steinkraus (Ed.), Industrialization of indigenous fermented foods, revised and expanded (pp. 587–635). Boca Raton: CRC Press.Google Scholar
  84. Latif, F., & Latif, M. A. (2014). Drinking Tuak tradition in Tradisi Minum Tuak di Momala Village, Dungaliyo, District, Gorontalo. Thesis, Universitas Negeri Gorontalo. In Indonesian language.Google Scholar
  85. Leisner, J. J., Vancanneyt, M., Rusul, G., Pot, B., Lefebvre, K., Fresi, A., & Tee, L. K. (2000). Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. International Journal of Food Microbiology, 63, 149–157.CrossRefGoogle Scholar
  86. Leisner, J. J., Vancanneyt, M., Pot, B. R., Lefebrvrem, K., Fresim, A., & Tee, L. K. (2001). Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. International Journal of Food Microbiology, 63(1–2), 149–157.CrossRefGoogle Scholar
  87. Leisner, J. J., Vancanneyt, M., Lefebvre, K., Vandemeulebroecke, B., Hoste, N. E., Vilaata, Rusul, G., & Swings, J. (2002). Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. International Journal of Systematic and Evolutionary Microbiology, 52, 927–931.Google Scholar
  88. Lennox, J. A., & Efiuvwere, B. J. O. (2013). Microbial dynamics during cucumber fermentation. Global Research Journal of Microbiology, 3(2), 13–17.Google Scholar
  89. Lindayani, & Hartayanie, L. (2013).The mapping of lactic acid bacteria from fermentation of local foods (Semarang): Tempoyak, Mandai and Yellow Bamboo Shoot Pickles. In: The 4th International Conference of Indonesian Society Lactic Acid Bacteria (ISLAB). Yogyakarta, 25th–26th Jan 2013.Google Scholar
  90. Lotong, N. (1985). Koji. In B. J. B. Wood (Ed.), Microbiology of fermented food (Vol. 2, pp. 237–270). London: Elsevier Applied Science Publishers.Google Scholar
  91. Maheshwari, D. K., Dubey, R. C., & Saravanamuthu, R. (2010). Industrial exploitation of microorganisms (p. 242). New Delhi: I.K. International Pub. House. ISBN 978-93-8002-653-4.Google Scholar
  92. Margono, T. D., Suryati, & Hartinah, S. (2000). Telur Asin. Jakarta: Center for Women Information Development. PDII-LIPI. In Indonesian language.Google Scholar
  93. Martinelli, A. F., & Hesseltine, C. W. (1964). Tempeh fermentation: Package and tray fermentation. Food Technology, 18(5), 167–171.Google Scholar
  94. Matsudo, T., Aoki, T., Abe, K., Fukuta, N., Higuchi, T., Sasaki, M., & Uchida, K. (1993). Determination of ethyl carbamate in soy sauce and its possible precursor. Journal of Agricultural Food Chemistry, 41(3), 352–356.CrossRefGoogle Scholar
  95. Merican, Z. (1977). Malaysian tempoyak. In K. H. Steinkraus (Ed.), Handbook of indigenous fermented food (p. 148). New York: Marcel Dekker.Google Scholar
  96. Mo, H., & Zhu, Y. (2012). In vitro digestion enhances anti-adhesion effect of tempe and tofu against Escherichia coli. Letters in Applied Microbiology, 54(2), 166–168.CrossRefGoogle Scholar
  97. Mulyowidarso, R. K., Fleet, G. H., & Buckle, K. A. (1991). Changes in the concentration of carbohydrates during the soaking of soybeans for tempe production. International Journal of Food Science and Technology, 26, 595–606.CrossRefGoogle Scholar
  98. Murata, K., Miyamoto, T., & Taguchi, F. (1968). Biosynthesis of B vitamins with Rhizopus oligosporus. Journal of Vitaminology (Kyoto, Japan), 14(3), 191–197.CrossRefGoogle Scholar
  99. Nahaisi, M. H., Abougrain, A. K., Madi, N. S., & Dabaj, K. H. (2005). Microbial quality of the green house fresh produce. International Society for Horticultural Science, 11, 1410–1450.Google Scholar
  100. Nakano, M. (1959). FAO Ajia chiiki shokuhin kakô kaigi ni shusseki shite [Attending the FAO Asian food processing conference]. Nosan Kakko Gijutsu Kenkyu Kaishi (Journal for the Utilization of Agricultural Products), 6(6), 292–302. In Japanese.CrossRefGoogle Scholar
  101. Nakano, M. (Ed.). (1967). Hakkô shokuhin [Fermented foods] (pp. 81–101). Tokyo: Korin Shoin. In Japanese.Google Scholar
  102. Nikkuni, S., Utomo, J. S., Antarlina, S. S., Ginting, E., & Goto, T. (2002). Application of white-spored mutants induced from koji molds for the production of Indonesian soy sauce (kecap). Mycotoxins, 52(1), 13–22.CrossRefGoogle Scholar
  103. Nout, M. J. R. (1989). Effect of Rhizopus and Neurospora spp. on growth of Aspergillus flavus and A. parasitus and accumulation of aflatoxin B1 in groundnut. Mycological Research, 93(4), 518–523.CrossRefGoogle Scholar
  104. Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: Update into the third millenium. Journal of Applied Microbiology, 98, 789–805.CrossRefGoogle Scholar
  105. Nout, M. J. R., & Rombouts, F. M. (1990). Recent developments in tempe research. Journal of Applied Bacteriology, 69, 609–633.CrossRefGoogle Scholar
  106. Nout, M. J. R., & Sarkar, P. K. (1999). Lactic acid food fermentation in tropical climates. Antonie van Leeuwenhoek, 76, 395–401.CrossRefGoogle Scholar
  107. Nout, M. J. R., De Dreu, M. A., Zuurbier, A. M., & Bonants-Van Laarhoven, T. M. G. (1987). Ecology of controlled soyabean acidification for tempe manufacture. Food Microbiology, 4, 165–172.CrossRefGoogle Scholar
  108. Nur, H. S. (2009). Microbial succession and biochemical aspect of Mandai Fermentation at low salt concentration. Makara Sains, 13(1), 13–16. In Indonesian Language.Google Scholar
  109. Nybom, S. M. K., Collado, M. C., Surono, I. S., Salminen, S. J., & Meriluoto, J. A. O. (2008). Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk. Journal of Agriculture and Food Chemistry, 56, 10.CrossRefGoogle Scholar
  110. Ohhira, J., Jeong, C. M., Miyamoto, T., & Kataoka, K. (1990). Isolation and identification of lactic acid bacteria from traditional fermented sauce in Southeast Asia. Japanese Journal of Dairy and Food Sciences, 39, 175–182.Google Scholar
  111. Ohta, T. (1965). Tenpe [Tempeh]. Nippon Jozo Kyokai Zasshi (Journal of the Society of Brewing, Japan), 60(9), 778–783. In Japanese.Google Scholar
  112. Ohta, T. (1971). Tenpe [Tempeh]. In T. Watanabe, H. Ebine, & T. Ohta (Eds.), Daizu Shokuhin [soyfoods]. Tokyo: Korin Shoin. 271 p. See p. 208–17. In Japanese.Google Scholar
  113. Ohta, T., Ebine, H., & Nakano, M. (1964). Tenpe (tempeh) ni kansuru kenkyû. I. Indonesia-san tenpe funmatsu no hinshitsu to seijô ni tsuite [Study on tempeh. I. On the property of tempeh powder made in Indonesia] Shokuryo Kenkyujo Kenkyu Hokoku (Report of the Food Research Institute). No. 18. p. 67–69. In Japanese.Google Scholar
  114. Okada, N. (1988). Tempeh—Indonesian fermented soybean food. Shokuryo, 27, 65–93 (In Japanese).Google Scholar
  115. Okada, N. (1989). Role of microorganism in tempe manufacture. Isolation vitamin B12 producing bacteria. Japan Agricultural Research Quarterly, 22, 310–316.Google Scholar
  116. Ola, S. S. (2009). Value and importance of ritual Lewak Tapo in Lamaholot ethnic group in Adonara Island, East Flores Regency. Humaniora, 21(3), 301–309. In Indonesian language.Google Scholar
  117. Ordonez, J. A., Hierro, E. M., Bruna, J. M., & dela Hoz, v. (1999). Changes in the components of dry-fermented sausages during ripening. CRC Critical Reviews of Food Science and Nutrition, 39, 329–367.CrossRefGoogle Scholar
  118. Pato, U., & Surono, I. S. (2013). Bile and acid tolerance of lactic acid bacteria isolated from tempoyak and their probiotic potential. International Journal of Agricultural Technology, 9(7), 1849–1862.Google Scholar
  119. Pato, U., Surono, I. S., Koesnandar, & Hosono, A. (2004). Hypocholesterolemic effect of indigenous Dadih lactic acid bacteria by deconjugation of bile salts. Asian- Australasian Journal of Animal Science, 17(12), 1741.CrossRefGoogle Scholar
  120. Pawiroharsono, S. (1997) Prospect of tempe as functional food. In: Proceedings of international tempe symposium. 13–15 July 1997, Bali.Google Scholar
  121. Pederson, C. S. (1971). Microbiology of food fermentations (2nd ed., p. 537). Westport: AVI Pub Co.Google Scholar
  122. Prinsen Geerligs, H. C. (1896). Einige chinesische Sojabohnenpraeparate [some Chinese soybean preparations]. Chemiker-Zeitung, 20(9), 67–69. Exp. Station Record 8:72.Google Scholar
  123. Puspito, H., & Fleet, G. H. (1985). Microbiology of sayur asin fermentation. Applied Microbiology and Biotechnology, 22(6), 442–445.CrossRefGoogle Scholar
  124. Putro, S. (1993). Fish fermentation technology in Indonesia. In C. H. Lee, K. H. Steinkraus, & P. J. A. Reilly (Eds.), Fish fermentation technology (pp. 107–128). Tokyo: United Nations University Press.Google Scholar
  125. Rahayu, W. P. (1980). Study on tape quality from different varieties of cassava (Manihot sp.). Undergraduate Thesis, Faculty of Agricultural Technology, Bogor Institute of Agriculture. In Indonesian language.Google Scholar
  126. Rahayu, E. S. (2003). Lactic acid bacteria in fermented foods of Indonesian origins. Agritech, 23, 75–84.Google Scholar
  127. Rahayu, E. S. (2010). Lactic acid bacteria and their role in food and health: Current research in Indonesia. Artikel. Faculty of Agricultural Technology, GadjahMada University.Google Scholar
  128. Rahayu, S. E., & Kuswanto, K. R. (1988). Processing technology of alcoholic beverages. Universitas Gadjah Mada. Yogyakarta. In Indonesian Language.Google Scholar
  129. Reina, L. D., Fleming, H. P., & Breidt, F., Jr. (2002). Journal of Food Protection, 12, 1881–1887.Google Scholar
  130. Roling, W. F. M., & van Verseveld, H. W. (1996). Characterization of Tetragenococcus halophila Populations in Indonesian Soy Mash (Kecap) fermentation. Applied and Environmental Microbiology, 62(4), 1203–1207.Google Scholar
  131. Roling, W. F. M., Timotius, K. H., Prasetyo, A. B., Stouthamer, A. H., & van Verseveld, H. W. (1994). Changes in microflora and biochemical composition during the baceman stage of traditional Indonesian kecup (soy sauce) production. Journal Fermentation Bioengineering, 77, 62–70.CrossRefGoogle Scholar
  132. Roubos-van den Hil, P. J., Nout, M. J. R., Beumer, R., van der Meulen, J., & Zwietering, M. H. (2009). Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. Journal of Applied Microbiology, 106, 1013–1021.CrossRefGoogle Scholar
  133. Roubos-van den Hil, P. J., Schols, H. A., Nout, M. J. R., Zwietering, M. H., & Gruppen, H. (2010). First characterization of bioactive components in soybean tempe that protect human and animal intestinal cells against enterotoxigenic Escherichia coli (ETEC) infection. Journal of Agriculture Food Chemistry, 58, 7649–7656.CrossRefGoogle Scholar
  134. Sadjono, Kapti, R., & Sudarmadji, S. (1992). ASEAN Food Journal, 7, 30–33.Google Scholar
  135. Saito, K. (1905). Microbiological studies on the brewing of Japanese Soja-Sauce. Botanical Magazine (Tokyo), 19(216), 75–77. In Japanese.CrossRefGoogle Scholar
  136. Samson, R. A., Van Kooij, J. A., & De Boer, E. (1987). Microbiological quality of commercial tempeh in the Netherlands. Journal of Food Protection, 50, 92–94.Google Scholar
  137. Saono, S., Basuki, T., & Sastraatmadja, D.D. (Eds.) (1977). Indonesian ragi. In: The Proceeding and Symposium on Indigenous Fermented Foods, Bangkok, 21–27 Nov 1977. GIAMI.Google Scholar
  138. Saono, S., Hosono, A., Tomomatsu, A., Matsuyama, A., Kozaki, M., & Baba, T. (Eds.) (1984). The preparation of brem ragi – An improved method. Proceeding of IPB-JICA, 31 July–2 Aug 1984, p 152–158.Google Scholar
  139. Sapers, G., & Annous, B. (2004). Browning inhibitor and processing aid contamination. Annual Meeting of Institute of Food Technologists, 89, 4.Google Scholar
  140. Saputra, K.E. (2013). Isolation, selection and characterization of lactic acid bacteria producing antibacterial compound in fermented salted egg. BSc Thesis. Food Technology and Agricultural Product Study Program, Gajah Mada University, Yogyakarta, Indonesia.Sari, P. M. (2014).Google Scholar
  141. Sari, P. M. (2014). The effect of Lactobacillus plantarum Mut7 and high fibers weet potato powder on diversity of intestinal microbiota of Sprague Dawley Rats. Master Thesis, Biotechnology Department, Gajah Mada UniversityGoogle Scholar
  142. Sastraatmadja, D. D., Tomita, F., & Kasai, T. (2002). Production of high-quality oncom, a traditional Indonesian fermented food, by the inoculation with selected mold strains in the form of pure culture and solid inoculum. Journal of the Graduate School of Agriculture, Hokkaido University, 70, 111–127.Google Scholar
  143. Shallenberger, R. S., Hand, D. B., & Steinkraus, K. H. (1976) Changes in sucrose, raffinose, and stachyose during tempeh fermentation. Report of the New York State of Agriculture Experiment Station. Google Scholar
  144. Sharma, A., & Kapoor, A. C. (1996). Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation. Plant Foods for Human Nutrition, 49(3), 241–252.CrossRefGoogle Scholar
  145. Shurtleff, W., & Aoyagi, A. (1979). Soyfoods buyer’s guide [Tofu, tempeh and miso shops in the USA and Canada]. Whole Foods (Berkeley, California), 2(1), 42–44.Google Scholar
  146. Shurtleff, W., & Aoyagi, A. (1985). The book of tempeh (2nd ed.). New York: Harper and Row.Google Scholar
  147. Shurtleff, W., & Aoyagi, A. (2001). The book of tempeh. Berkeley: Ten Speed Press.Google Scholar
  148. Shurtleff, W., & Aoyagi, A. (2007). History of soybeans and soyfoods. Lafayette: Soyinfo center.Google Scholar
  149. Shurtleff, W., & Aoyagi, A. (2011). History of tempeh and tempeh products (1815–2011). Lafayette: Soyinfo center. ISBN 978-1-928914-39-6.Google Scholar
  150. Simon, S. O. (2009). Value and importance of Ritual Lewak Tapo at Ethnic Lamaholot in Adonara Island, East Flores. Humoniora, 21(3), 301–309.Google Scholar
  151. Smith, A. K. (1963). Foreign uses of soybean protein foods. Cereal Science Today, 8, 196.Google Scholar
  152. Soenarto, Y., Sudigbia, I., Hermana, Karmini, M., & Karyadi, D. (1997). Antidiarrheal characteristics of tempe produced traditionally and industrially in children aged 6–24 months with acute diarrhea. In S. Sudarmadji, S. Suparmo, & S. Raharjo (Eds.), International tempe symposium (pp. 174–186). Bali: Indonesian Tempe Foundation.Google Scholar
  153. Sorenson, W. G., & Hesseltine, C. W. (1966). Carbon and nitrogen utilization by Rhizopus oligosporus. Micologia. 58:681, Sept.–Oct.Google Scholar
  154. Stahel, G. (1946). Foods from fermented soybeans as prepared in the Netherlands Indies. I. Taohoo, a cheeselike substance, and some other products. Journal of the New York Botanical Garden, 47(563), 261–267.Google Scholar
  155. Steinkraus, K. H. (1980). Introduction: Food from microbes. BioScience, 30(6), 384–386.CrossRefGoogle Scholar
  156. Steinkraus, K. H. (1983). Handbook of indigenous fermented foods. New York: Marcel Dekker.Google Scholar
  157. Steinkraus, K. H. (Ed.) (1995). Indonesian soy sauce: Kecap. In: Handbook of indigenous fermented foods, (pp. 539–543, 2nd Edn.), New York: Marcel Dekker.Google Scholar
  158. Steinkraus, K. H. (1996). Handbook of indigenous fermented foods (2 expanded and revisedth ed.). New York: Marcel Dekker.Google Scholar
  159. Steinkraus, K. H., Yap, B. H., van Buren, J. P., Provvidenti, M. I., & Hand, D. B. (1960). Studies on tempeh, an Indonesian fermented soybean food. Food Research, 25, 777–788.CrossRefGoogle Scholar
  160. Suan, C. J. (1996). Chemical composition of tempoyak. In K. H. Steinkraus (Ed.), Handbook of indigenous fermented foods. New York: Maracel Dekker.Google Scholar
  161. Sudarmadji, S., & Markakis, P. (1977). The phytate and phytase of soybean tempeh. Journal of the Science of Food and Agriculture, 28, 381–383.CrossRefGoogle Scholar
  162. Suharni, T.T. (1984). Formation of Organic Acids by Bacteria involved in fermented cassava. Thesis in Indonesian Language. Faculty of Biology Gajah Mada University Yogyakarta.Google Scholar
  163. Sulchan, M., and Nur, E.W. (2007). Nutritive value and amino acid composition of tempe gembus and its effect on the growth of rats. Medical Indonesia Magazine, 57(3), 80–85.Google Scholar
  164. Sulchan, M., & Nur, E. W. (2007). Nutritive value and amino acid composition of tempe gembus and its effect on the growth of rats. Medical Indonesia Magazine, 57(3), 80–85.Google Scholar
  165. Suliantari, & Rahayu, W.P. (1990) Fermentation technology of tubers and cereals. Centre for Inter-University, Food and Nutrition, Bogor Institute of Agriculture. In Indonesian language.Google Scholar
  166. Sulistiani, Abinawanto, Sukara, E., Salamah, A., Dinoto, A., & Mangunwardoyo, W. (2014). Identification of lactic acid bacteria in sayur asin from Central Java (Indonesia) based on 16S rDNA sequence. International Food Research Journal, 21(2), 527–532.Google Scholar
  167. Sumi, H., & Okamoto, T. (2003). Thrombolytic activity of an aqueous extract of tempe. Journal of Home Economics Japan, 54, 337–342.Google Scholar
  168. Sumi, H., & Yatagai, C. (2006). Fermented soybean component and disease prevention. In M. Sugano (Ed.), Soy in health and disease prevention (1st ed., pp. 263–266). New York: CRC Press.Google Scholar
  169. Suprapti, M. L.(2002). Egg preservation. Kanisius. Yogyakarta. In Indonesian language.Google Scholar
  170. Suprianto, Ohba, R., Koga, T., & Ueda, S. (1989). Liquefaction of glutinous rice and aroma formation in tape preparation by Ragi. Journal of Fermentation and Bioengineering, 67(4), 249–252.CrossRefGoogle Scholar
  171. Surono, I. S. (2000). Performance of dadih lactic cultures at low temperature milk application. Proceeding of the ninth animal science congress of AAAP. 1–5 July 2000. Sydney: UNSW.Google Scholar
  172. Surono, I. S. (2003a). The effect of freezing methods on binding properties towards Trp-P1 and ß–Galactosidase activity of dadih lactic bacteria. Journal of Microbiology Indonesia, 8(1), 8–12.Google Scholar
  173. Surono, I. S. (2003b). In vitro probiotic properties of indigenous dadih lactic acid bacteria. Asian-Australasian Journal of Animal Science, 16, 726–731.CrossRefGoogle Scholar
  174. Surono, I. S., Collado, M. C., Salminen, S., & Meriluoto, J. (2008). Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food and Chemical Toxicology, 46(2), 502–507.CrossRefGoogle Scholar
  175. Surono I. S., & Nurani, D. (2001). Exploration of indigenous lactic acid bacteria from dadih of West Sumatra for good starter cultures and probiotic bacteria. Domestic Collaborative Research Grant Program (DCRG), URGE Project, 2000–2001. Research Report. February 2001.Google Scholar
  176. Surono, I. S., & Hosono, A. (1994a). Microflora and their enzyme profile in “Terasi” starter. Bioscience, Biotechnology, and Biochemistry, 58(6), 1167–1169.CrossRefGoogle Scholar
  177. Surono, I. S., & Hosono, A. (1994b). Chemical and aerobic bacterial composition of “Terasi”, a traditional fermented product from Indonesia. Journal of Food Hygienic Society of Japan, 35(3), 298–304.CrossRefGoogle Scholar
  178. Surono, I. S., & Hosono, A. (1996a). Antimutagenicity of milk cultured with lactic acid bacteria from Dadih against mutagenic Terasi. Milchwissenschaft, 51(9), 493–497.Google Scholar
  179. Surono, I. S., & Hosono, A. (1996b). Bacterial mutagenicity of terasi and antimutagenicity of Indonesian Jasmine tea against terasi. International Journal of Food Microbiology, 32, 49–58.CrossRefGoogle Scholar
  180. Surono, I.S., & Hosono, A. (2011). Starter cultures. In: H. Roginski, J.W. Fuquay, & P.F. Fox. (Eds.). Encyclopedia of dairy science. Elsevier, pp. 477–482.Google Scholar
  181. Surono, I. S., Hosono, A., & Tomomatsu, A. (1983). Traditional milk products made from buffalo milk by use of higher plants as coagulants in Indonesia. Japanese Journal of Dairy and Food Science 32(3).Google Scholar
  182. Surono, I. S., Pato, U., Koesnandar, & Hosono, A. (2009). In vivo antimutagenicity of Dadih probiotic bacteria towards Trp-P1. Asian-Australasian Journal of Animal Science, 33(1).Google Scholar
  183. Surono, I. S., Khomsan, A., Sobariah, E., & Nurani, D. (2010). Effect of oxygenated water and probiotic administration on fecal microbiota of rats. Microbiology Indonesia, 4, 1.CrossRefGoogle Scholar
  184. Surono, I. S., Koestomo, F. P., Novitasari, N., Zakaria, F. R., Yulianasari, & Koesnandar. (2011). Novel probiotic Enterococcus faecium IS-27526 supplementation increased total salivary sIgA level and bodyweight of pre-school children: A pilot study. Anaerobe, 17, 6. Elsevier.CrossRefGoogle Scholar
  185. Surono, I. S., Martono, P. D., Kameo, S., Suradji, E. W., & Koyama, H. (2014). Effect of probiotic L. plantarum IS-10506 and zinc supplementation on humoral immune response and zinc status of Indonesian pre-schoolchildren. Journal of Trace Elements in Medicine and Biology, 28, 465–469.CrossRefGoogle Scholar
  186. Sutardi, & Buckle, K. A. (1985). Phytic acid changes in soybeans fermented by traditional inoculum and six strains of Rhizopus oligosporus. Journal of Applied Bacteriology, 58(6), 539–543.CrossRefGoogle Scholar
  187. Swain, M. R., Marimuthu, A., Ray, R. C., & Rani, R. P. (2014). Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International, 1–19 (open access article).Google Scholar
  188. Syarief, R. (1997). Production and marketing of small scale tempe industry in Indonesia. In: Sudarmaji, Suparmo, & Raharjo (Eds.), Reinventing the hidden miracle of Tempe. Proceedings International Tempe Symposium. Bali, 13–15 July 1997.Google Scholar
  189. Tamang, J. P. (2015). Health benefits of fermented foods and beverages (p. 636). New York: CRC Press, Taylor & Francis Group. ISBN 978-1-4665-88097.CrossRefGoogle Scholar
  190. Tibbott, S. (2004). Tempeh: The “other” white beancake. In Y. H. Hui, L. Meunier-Goddik, A. S. Hansen, J. Josephsen, W. Nip, P. S. Stanfield, & F. Toldra (Eds.), Handbook of food and beverage fermentation technology (pp. 583–594). New York: Marcel Dekker Monticello.Google Scholar
  191. Uchimura, T., Rahayu, E. S., & Komagata, K. (1998) Identification of lactic acid bacteria isolated from a chinese starter, ragi, in Indonesia. In: Proceedings of international conference on Asian network on microbial researches, held at Gajah Mada University Yogyakarta, 23–25 Feb 1998.Google Scholar
  192. Van der Riet, W. B., Wigt, A. W., Cilliers, J. J. L., & Datel, J. M. (1987). Food chemical analysis of tempeh prepared from South Africa. Food Chemistry, 25, 197–208.CrossRefGoogle Scholar
  193. Van Veen, A. G. (1962). Panel discussion on problems involved in increasing world-wide use of soybean products as foods: Possible contribution of FAO. In: USDA Northern Regional Research Laboratory, ed. 1962. Proceedings of Conference on Soybean Products for Protein in Human Foods. Peoria: USDA NRRL., 242 p.Google Scholar
  194. Van Veen, A. G. (1965). Fish as food in fermented and dried seafood products in Southeast Asia. In: G. Borgstrom, (Ed.), (vol. 3). New York: Academic Press.Google Scholar
  195. VanVeen, A. G., & Schaefer, G. (1950). The influence of the tempeh fungus on the soya bean. Tropical and Geographical Medicine, 2(3), 270–281.Google Scholar
  196. Vorderman, A. G. (1902). Analecta op bromatologisch gebied. IV. [Writings on mold- fermented foods. IV.]. Geneeskundig Tijdschrift voor Nederlandsch-Indie, 42, 395–431. In Dutch language.Google Scholar
  197. Wagenknecht, A. C., Mattick, L. R., Lewin, L. M., Hand, D. B., & Steinkraus, K. H. (1961). Change in soybean lipids during tempeh fermentation. Journal of Food Science, 26(4), 373–376.CrossRefGoogle Scholar
  198. Wang, H. L. (1984). Tofu and tempeh as potential protein sources in the western diet. Journal of American Oil Chemical Society, 61, 528.CrossRefGoogle Scholar
  199. Wang, H. L., & Hesseltine, C. W. (1965). Studies on the extracellular proteolytic enzymes of Rhizopus oligosporus. Canadian Journal of Microbiology, 11, 727.CrossRefGoogle Scholar
  200. Wang, H. L., Ruttle, D. I., & Hesseltine, C. W. (1968). Protein quality of wheat and soybeans after Rhizopus oligosporus fermentation. Journal of Nutrition, 96, 109.Google Scholar
  201. Wang, H. L., Ruttle, D. I., & Hesseltine, C. W. (1969). Antibiotic activity of a fermented soybean food. Federation Proceedings, 28, 304. Mar.-Apr. 1969.Google Scholar
  202. Wang, H. L., Ellis, J. J., & Hesseltine, C. W. (1972). Antibacterial activity produced by molds commonly used in oriental food fermentations. Mycologia, 64(1), 218–221.CrossRefGoogle Scholar
  203. Wang, H. L., Swain, E. W., & Hesseltine, C. W. (1975). Mass production of Rhizopus oligosporus spores and their application in tempeh fermentation. Journal of Food Science, 40(1), 168–170.CrossRefGoogle Scholar
  204. Wang, H. L., Swain, E. W., & Hesseltine, C. W. (1980). Phytase of molds used in oriental food fermentation. Journal of Food Science, 45, 1262–1266.CrossRefGoogle Scholar
  205. Watanabe, T., Ebine, H., & Ohta, T. (Eds.). (1971). Daizu shokuhin [Soyfoods]. Tokyo: Korin Shoin. 271 p. In Japanese.Google Scholar
  206. Widowati, T. M., Hamzah, B., Wijaya, A., & Pambayun, R. (2013). Enumeration and identification of dominant lactic acid bacteria in Indonesian “Tempoyak” during low temperature fermentation. In: The 13th ASEAN FOOD conference, Singapore, 09–11 Sept 2013.Google Scholar
  207. Wikandari, R., Millati, R., Lennartsson, P. R., Harmayani, E., & Taherzadeh, M. J. (2012). Isolation and characterization of zygomycetes fungi from tempe for ethanol production and biomass applications. Applied Biochemistry and Biotechnology, 167(6), 1501–1512.CrossRefGoogle Scholar
  208. Wilfred, F. M., Ling, R. G., Apriyantono, A., & Van Verseveld, H. W. (1996). Comparison between Traditional and Industrial Soy Sauce ( Kecap ) Fermentation in Indonesia. Journal of Fermentation and Bioengineering, 81(3), 275–278.CrossRefGoogle Scholar
  209. Williams, S. W. (1848). The middle kingdom: A survey of the geography, government, education, social life, arts, religion, & co. of the Chinese empire and its inhabitants, (2 vol.) Wiley & Putnam.Google Scholar
  210. Winarni (1988) Microflora of fermented dried cassava. (gatot). Undergraduate thesis, Faculty of Agricultural Technology, Gajah Mada University. In Indonesian language.Google Scholar
  211. Winarno, F. G. (1983). Traditional Technologies of Indonesia. Workshop on Traditional Foods Conservation and Processing Technologies. CFTRI, Mysore 18–26, July 1983.Google Scholar
  212. Winarno, F. G. (1989). Production and utilization of tempeh in Indonesian Foods. American Chemical Society, 4, 363–368.Google Scholar
  213. Winarno, F. G., Fardiaz, S., & Daulay, D. (1973). Indonesian fermented foods. Indonesia: Department of Agricultural Product Technology, Bogor Agricultural University.Google Scholar
  214. Wirawati, C. U. (2002). Potency of lactic acid bacteria isolated from Tempoyak as Probiotic. Thesis. Bogor Agricultural University, In Indonesian Language.Google Scholar
  215. Wood, B. J. B. (Ed.). (1998). Microbiology of fermented foods (2nd ed., Vol. 2, p. 498). London: Blackie Academic and Professional. Vols 1 and 2.Google Scholar
  216. Yokotsuka, T. (1986). Soy sauce biochemistry. Advances in Food Research, 30, 195–328.CrossRefGoogle Scholar
  217. Yuliana, N., & Dizon, E. I. (2011). Phenotypic identification of lactic acid bacteria isolated from Tempoyak (fermented durian) made in the Philippines. International Journal of Biology, 3(2), 145–152.CrossRefGoogle Scholar
  218. Yuliana, N., & Garcia, V. V. (2009). Influence of Pediococcus acidilactici as a starter on the flavor of tempoyak. Indian Journal of Biotechnology, 8, 304–310.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Food Technology Department, Faculty of EngineeringBina Nusantara UniversitySerpong-TangerangIndonesia

Personalised recommendations