Ethnic Fermented Foods of the Philippines with Reference to Lactic Acid Bacteria and Yeasts

  • Francisco B. Elegado
  • Shara Mae T. Colegio
  • Vanessa Marie T. Lim
  • Andrea Therese R. Gervasio
  • Maria Teresa M. Perez
  • Marilen P. Balolong
  • Charina Grace B. Banaay
  • Bernadette C. Mendoza


The Philippines with its large ethnic diversity has regional varieties of fermented foods, generally produced in households or small-scale industry, depending on the availability of raw materials and traditional food preferences. The major documented Philippine fermented foods are basically made from rice, seafood, sugarcane, coconut, nipa palm, and selected fruits and vegetables. These fermented foods are prepared for preservative and organoleptic (condiments) usage and in some instances for folkloric purposes. Urbanization has remarkably affected the diet in developing countries like the Philippines. There are the dramatic increase in food variety and influences of international cuisine. The recent trends in enhanced consumer preference for functional foods create added economic opportunity for fermented foods, specifically probiotic foods and drinks. The identification and characterization of lactic acid bacteria and yeast flora of fermented foods from Central Luzon, Philippines, and the muscovado sugar-based kefir from Leyte, Philippines, with particular emphasis on their antimicrobial activities, are discussed here. These are additional contributions to the continuing research on probiotic and functionalities of Asian fermented foods.


Lactic Acid Bacterium Basic Local Alignment Search Tool Fermented Food Bacteriocin Activity Ferment Food 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ames, B. N., Durston, W. E., Yamasaki, E., & Lee, F. D. (1973). A simple test system combining liver homogenates for activation and bacteria detection. Proceedings of the National Academy of Science United States of America, 70(8), 2281–2285.CrossRefGoogle Scholar
  2. Arai, S. (2002). Global view on functional foods: Asian perspectives. British Journal of Nutrition, 88, S139–S143.CrossRefGoogle Scholar
  3. Arroyo, P. T., Ludovico-Pelayo, L. A., Solidum, H. T., Chiu, Y. N., Lero, M., & Alcantara, E. E. (1977). Studies on rice-shrimp fermentation: balao balao. Philippine Journal of Food Science and Technology, 2, 106–125.Google Scholar
  4. Baens-Arcega, L. (1977). Patis, a traditional fermented fish sauce and condiment of the Philippines. In Symposium of indigenous fermented foods. Bangkok.Google Scholar
  5. Balolong, M. P., Bautista, R. L. S., Ecarma, N. C. A., Balolong, E. C. Jr., Hallare, A. V., & Elegado, F. B. (2015). The anti-obesity potential of Lactobacillus brevis 4B1, a probiotic strain isolated from balao-balao, a traditional Philippine fermented food. International Food Research Journal, In press.Google Scholar
  6. Banaay, C. G. B., Balolong, M. P., & Elegado, F. B. (2013). Lactic acid bacteria in Philippine traditional fermented foods. In M. Kongo (Eds.), Lactic acid bacteria – R&D for food, health and livestock purposes (pp. 572–588). Scholar
  7. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.Google Scholar
  8. Belen, R. H. (2010). Detection and molecular characterization of putative Listeria species isolated from local food products. M.S. thesis, University of the Philippines Los Baños, College, Laguna.Google Scholar
  9. Calanoga, E. D. L. (1995). Study of microbiological, biochemical and nutritional changes in tinabal molmol (Scarus spp.) fermentation. M.S thesis, University of the Philippines Los Baños, College, Laguna.Google Scholar
  10. Cheirsilp, B., Shoji, H., Shimizu, H., & Shioya, S. (2003). Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production. Journal of Bioscience and Bioengineering, 96(3), 279–284.CrossRefGoogle Scholar
  11. Chiang, S. S., & Pan, T. M. (2012). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93(3), 903–916.CrossRefGoogle Scholar
  12. Clemente, R. F. (2012). Isolation, characterization and identification of lactic acid bacteria from traditional fermented vegetables products of Bulacan. Ph.D. thesis, De LaSalle University Manila, Philippines.Google Scholar
  13. Colegio, S. M. T. (2013). Muscovado-based kefir from Leyte, Philippines: Yeast and lactic acid bacterial flora and selected bioactivity assays. M.S. thesis, University of the Philippines, College, Laguna.Google Scholar
  14. Del Rosario, R. R., & Basaran, A. S. (1984). Composition of Philippine fish sauce (patis). Philippine Agriculturist, 67(4), 373–378.Google Scholar
  15. Elegado, F., Guerra, M., Macayan, R., Estolas, M., & Lirazan, M. (2004). Antimicrobial activity and DNA fingerprinting of bacteriocinogenic Pediococcus acidilactici through RAPD-PCR. The Philippine Agricultural Scientist, 87(2), 229–237.Google Scholar
  16. Endo, A., & Okada, S. (2005). Lactobacillus satsumensis sp. nov. isolated from mashes of shochu, a traditional Japanese distilled spirit made from fermented rice and other starchy materials. International Journal of Systematic and Evolutionary Microbiology, 55, 83–85.CrossRefGoogle Scholar
  17. FAO/WHO Working Group. (2002). Guidelines for the evaluation of probiotics in food. London, Ontario, Canada. April 30 and May 1, 2002. 11 p.Google Scholar
  18. Farnworth, E. R. (2006). Kefir: A complex probiotic. Food Science and Technology Bulletin: Functional Foods, 2(1), 1-17.Google Scholar
  19. Fujita, S., Senda, Y., Nakaguchi, S., & Hashimoto, T. (2001). Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. Journal of Clinical Microbiology, 39, 3617–3622.CrossRefGoogle Scholar
  20. Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365–368.CrossRefGoogle Scholar
  21. Gervasio, A. T. R., & Lim, V. M. T. (2007). Probiotic characterization of bacteriocinogenic lactic acid bacteria isolated from fermented foods of selected areas of central Luzon. Undergraduate thesis, University of the Philippines Manila, Padre Faura, Manila.Google Scholar
  22. Lane, D. J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematic (pp. 115–175). New York: Wiley.Google Scholar
  23. Larcia, L. L., Estacio, R. C., & Dalmacio, L. M. (2011). Bacterial diversity in Philippine fermented mustard (burong mustasa) as revealed by 16S rRNA gene analysis. Beneficial Microbes, 2(4), 263–271.CrossRefGoogle Scholar
  24. Leite, A. M. O., Mayo, B., Rachid, C. T. C. C., Peixoto, R. S., Silva, J. T., Paschoalin, V. M. F., & Delgado, S. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiology, 31, 215–221.CrossRefGoogle Scholar
  25. Lopitz-Otsoa, F., Rementeria, A., Elquezabal, N., & Garaizar, J. (2006). Kefir: A symbiotic yeasts-bacteria community with alleged healthy capabilities. Revista Iberoamericana de Micología, 23, 67–74.CrossRefGoogle Scholar
  26. Luzzato, L., Apirion, D., & Schlessinger, D. (1968). Mechanism of action of streptomycin in E. coli: Interruption of the ribosome cycle at the initiation of protein synthesis. PNAS, 60, 873–880.CrossRefGoogle Scholar
  27. Mackay, I. (2005). Emerging virus group, Sir Albert Sakzewsksi Virus Research Centre & Clinical Medical Virology Centre, Royal Children’s Hospital & University of Queensland, Australia. Internet: Accessed 2 Feb 2007.
  28. Mañez-Lazaro, R., Ferrer, S., Rossello-Mora, R., & Prado, I. (2009). Lactobacillus oeni sp. nov., from wine. International Journal of Systematic and Evolutionary Microbiology, 59, 2010–2014.CrossRefGoogle Scholar
  29. Martinez, B., Suárez, J. E., & Rodriguez, A. (1996). Lactococcin 972, a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology, 142, 2393–2398.CrossRefGoogle Scholar
  30. Miguel, M. G. C. P., Cardoso, P. G., & Lago, L. A. (2010). Diversity of bacteria present in milk kefir grains using culture-dependent and culture independent methods. Food Research International, 43, 1523–1528.CrossRefGoogle Scholar
  31. Motlagh, A., Bukhtiyarova, M., & Ray, B. (1994). Complete nucleotide sequence of pSMB74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Letters in Applied Microbiology, 18, 305–312.CrossRefGoogle Scholar
  32. Nielsen, D. S., Schillinger, U., Franz, C. M. A. P., Bresciani, J., Amoa-Awua, W., Holzapfel, W. H., & Jakobsen, M. (2007). Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. International Journal of Systematic and Evolutionary Microbiology, 57, 1468–1472.CrossRefGoogle Scholar
  33. Olympia, M. S. D. (1992). Fermented fish products in the Philippines. In: Applications of biotechnology in traditional fermented foods. Report of an Ad Hoc Panel of the Board on Science and Technology for International Development, National Research Council (pp. 131–139). Washington, DC: National Academy Press.Google Scholar
  34. Olympia, M. S. D., Fukuda, H., Ono, H., Kaneko, Y., & Takano, M. (1995). Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, “burong isda”, and its amylolytic enzyme. Journal of Fermentation and Bioengineering, 80(2), 124–130.CrossRefGoogle Scholar
  35. Orillo, C. A., & Pederson, C. S. (1968). Lactic acid bacterial fermentation of Burong dalag. Applied Microbiology, 16, 1669–1671.Google Scholar
  36. Otles, S., & Cagindi, O. (2003). Kefir: A probiotic dairy composition, nutritional and therapeutic aspects. Pakistan Journal of Nutrition, 2(2), 54–59.CrossRefGoogle Scholar
  37. Perez, M. T. M., Apaga, D. L. T., Robidillo, C. J., & Elegado, F. B. (2012). Pediocin structural genes of bacteriocinogenic pediococci isolated from indigenous Philippine and Vietnamese foods. In Proceedings of the 2012 international conference on green technology and sustainable development (pp. 131–137). Vietnam: University of Technical Education Ho Chi Minh.Google Scholar
  38. Perez, R. H., Perez, M. T. M., & Elegado, F. B. (2015). Bacteriocins from lactic acid bacteria: A review of biosynthesis, mode of action, fermentative production, uses and prospects. International Journal of Philippine Science and Technology, 8(2), 61–67.CrossRefGoogle Scholar
  39. Remiger, A., Ehrmann, M., & Vogel, R. (1996). Identification of bacteriocin-encoding genes in lactobacilli by polymerase chain reaction (PCR). Systematic Applied Microbiology, 19, 28–34.CrossRefGoogle Scholar
  40. Saez, J. S., Lopez, C. A., Kies, V. E., & Sangorin, M. (2011). Production of volatile phenols by Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia. Food Microbiology, 28(3), 503–509.CrossRefGoogle Scholar
  41. Sakai, H., Caldo, G. A., & Kozaki, M. (1983). The fermented fish food, Burong isda, in the Philippines. Journal of Agricultural Science – Tokyo Nogyo Daigaku, 28(1), 138–144.Google Scholar
  42. Sanchez, P. C. (2008). Philippine fermented foods: Principles and technology. Diliman: The University of the Philippines Press. 511 pp.Google Scholar
  43. Schröder, J., Maus, I., Trost, E., & Tauch, A. (2011). Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics, 12, 545–568.CrossRefGoogle Scholar
  44. Shimizu, M. (2012). Functional food in Japan: Current status and future of gut-modulating food. Journal of Food and Drug Analysis, 20, S213–S216.Google Scholar
  45. Silva, K. R., Rodrigues, S. A., Filho, L. X., & Lima, A. S. (2009). Antimicrobial activity of broth fermented with kefir grains. Applied Biochemistry and Biotechnology, 152, 316–325.CrossRefGoogle Scholar
  46. Siro, I., Kapolna, E., Kapolna, B., & Lugasi, A. (2008). Functional food: Product development, marketing and consumer acceptance – a review. Appetite, 51, 456–467.CrossRefGoogle Scholar
  47. Solidum, H. (1979). Chemical and microbiological changes during the fermentation of Balao-Balao. Philippine Journal of Food Science and Technology, 3, 1–16.Google Scholar
  48. Steinkraus, K. H. (1983). Handbook of indigenous fermented foods (1st ed.). New York: Marcel Dekker. 671 pp.Google Scholar
  49. Steinkraus, K. H. (1995). Handbook of indigenous fermented foods. 2nd Ed. Revised and Enlarged. New York: Marcel Dekker. 776 pp.Google Scholar
  50. Tamang, J. P., & Kailasapathy, K. (2010). Fermented foods and beverages of the world. New York: CRC Press. 460 pp.CrossRefGoogle Scholar
  51. Tan, J. D. (2010). BFAD guidelines on probiotics in the Philippines. In Proceedings of the 2010 conference of the Philippine Society for Lactic Acid Bacteria. Visayas State University, Baybay, Leyte, Philippines, 19 Nov 2010.Google Scholar
  52. Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46, 327–338.CrossRefGoogle Scholar
  53. Villarante, K. I., Elegado, F. B., Iwatani, S., Zendo, T., Sonomoto, K., & de Guzman, E. E. (2011). Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World Journal of Microbiology and Biotechnology, 27, 975–980.CrossRefGoogle Scholar
  54. Ward, A. C., Castelli, L. A., Macreadie, I. G., & Azad, A. A. (1994). Vectors for Cu(2+)-inducible production of glutathione S-transferase-fusion proteins for single-step purification from yeast. Yeast, 10(4), 441–449.CrossRefGoogle Scholar
  55. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic.Google Scholar
  56. Yamada, K., Sato-Mito, N., Nagata, J., & Umegaki, K. (2008). Health claim evidence requirements in Japan. Journal of Nutrition, 138, 1192S–1198S.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Francisco B. Elegado
    • 1
  • Shara Mae T. Colegio
    • 2
  • Vanessa Marie T. Lim
    • 3
  • Andrea Therese R. Gervasio
    • 3
  • Maria Teresa M. Perez
    • 1
  • Marilen P. Balolong
    • 3
  • Charina Grace B. Banaay
    • 2
  • Bernadette C. Mendoza
    • 2
  1. 1.National Institutes of Molecular Biology and BiotechnologyUniversity of the Philippines Los Baños, CollegeLagunaPhilippines
  2. 2.Institute of Biological ScienceUniversity of the Philippines Los Baños, CollegeLagunaPhilippines
  3. 3.Department of Biology, College of ScienceUniversity of the Philippines ManilaManilaPhilippines

Personalised recommendations