Skip to main content

Chemistry and Biology of Marine Sponge Collagens

  • Chapter
  • First Online:
Marine Sponges: Chemicobiological and Biomedical Applications

Abstract

Collagens are the proteins found in the extracellular matrix of multicellular organisms, from primitive sponges (parazoans) to highly advanced mammals (metazoans). These proteins, classified as the “collagen superfamily,” comprise about 28 members each with at least one triple-helical domain. Collagens deposited in the extracellular matrix (ECM) and connective tissues form supramolecular assemblies and function as structural proteins contributing to mechanical properties, organization, and shape of tissues. They regulate cell proliferation, migration, and differentiation by binding to cognate receptors on the cell surface and triggering signal transduction cascades. Collagens with restricted tissue distribution perform specific biological functions. This chapter envisages the structural and functional characteristics of both invertebrate and vertebrate collagens with a special account of sponge collagens and their significance in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho S, Turakainen H, Onnela M-L, Boedtker H (1993) Characterization of an intronless collagen gene family in the marine sponge Microciona prolifera. PNAS 90(15):7288–7292. doi:10.2307/2362698

    Article  CAS  Google Scholar 

  • Aishwarya S, Mahalakshmi S, Sehgal PK (2008) Collagen-coated polycaprolactone microparticles as a controlled drug delivery system. J Microencapsul 25(5):298–306. doi:10.1080/02652040801972004

    Article  CAS  Google Scholar 

  • Aouacheria A, Geourjon C, Aghajari N, Navratil V, Deléage G, Lethias C, Exposito J-Y (2006) Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol Biol Evol 23(12):2288–2302. doi:10.1093/molbev/msl100

    Article  CAS  Google Scholar 

  • Bella J, Eaton M, Brodsky B, Berman H (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266:75–81

    Article  CAS  Google Scholar 

  • Bella J, Liu J, Kramer R, Brodsky B, Berman HM (2006) Conformational effects of Gly–X–Gly interruptions in the collagen triple helix. J Mol Biol 362(2):298–311. doi:http://dx.doi.org/10.1016/j.jmb.2006.07.014

    Article  CAS  Google Scholar 

  • Borza D-B, Bondar O, Ninomiya Y, Sado Y, Naito I, Todd P, Hudson BG (2001) The NC1 domain of collagen IV encodes a novel network composed of the α1, α2, α5, and α6 chains in smooth muscle basement membranes. J Biol Chem 276(30):28532–28540. doi:10.1074/jbc.M103690200

    Article  CAS  Google Scholar 

  • Boutaud A, Borza D-B, Bondar O, Gunwar S, Netzer K-O, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG (2000) Type IV collagen of the glomerular basement membrane: evidence that the chain specificity of network assembly is encoded by the noncollagenous nc1 domains. J Biol Chem 275(39):30716–30724. doi:10.1074/jbc.M004569200

    Article  CAS  Google Scholar 

  • Boute N, Exposito J-Y, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88(1–2):37–44. doi:10.1016/S0248-4900(97)86829-3

    Article  CAS  Google Scholar 

  • Branden C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Publishing, Taylor and Francis group, New York

    Google Scholar 

  • Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48(10):1291–1306. doi:10.1177/002215540004801001

    Article  CAS  Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. PNAS 87(17):6669–6673

    Article  CAS  Google Scholar 

  • Exposito J-Y, Ouazana R, Garrone R (1990) Cloning and sequencing of a porifera partial cDNA coding for a short-chain collagen. Eur J Biochem 190(2):401–406. doi:10.1111/j.1432-1033.1990.tb15589.x

    Article  CAS  Google Scholar 

  • Exposito JY, Le Guellec D, Lu Q, Garrone R (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266(32):21923–21928

    CAS  Google Scholar 

  • Exposito J-Y, Larroux C, Cluzel C, Valcourt U, Lethias C, Degnan BM (2008) Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J Biol Chem 283(42):28226–28235. doi:10.1074/jbc.M804573200

    Article  CAS  Google Scholar 

  • Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45(2):113–136. doi:http://dx.doi.org/10.1016/S0939-6411(98)00017-4

    Google Scholar 

  • Garrone R, Huc A, Junqua S (1975) Fine structure and physicochemical studies on the collagen of the marine sponge Chondrosia reniformis Nardo. J Ultrastruct Res 52(2):261–275. doi:http://dx.doi.org/10.1016/S0022-5320(75)80117-1

    Article  CAS  Google Scholar 

  • Hamano Y, Kalluri R (2005) Tumstatin, the NC1 domain of α3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333(2):292–298. doi:http://dx.doi.org/10.1016/j.bbrc.2005.05.130

    Article  CAS  Google Scholar 

  • Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T (2007) Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. Biomacromolecules 8(11):3452–3457. doi:10.1021/bm700574y

    Article  CAS  Google Scholar 

  • Heino J (2007) The collagen family members as cell adhesion proteins. BioEssays 29(10):1001–1010. doi:10.1002/bies.20636

    Article  CAS  Google Scholar 

  • Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268(35):26033–26036

    CAS  Google Scholar 

  • Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348(25):2543–2556. doi:10.1056/NEJMra022296

    Article  CAS  Google Scholar 

  • Imhoff JM, Garrone R (1983) Solubilization and characterization of Chondrosia r eniformis sponge collagen. Connect Tissue Res 11(2–3):193–197. doi:10.3109/03008208309004855

    Article  CAS  Google Scholar 

  • Khoshnoodi J, Sigmundsson K, Cartailler J-P, Bondar O, Sundaramoorthy M, Hudson BG (2006) Mechanism of chain selection in the assembly of collagen IV: a prominent role for the α2 chain. J Biol Chem 281(9):6058–6069. doi:10.1074/jbc.M506555200

    Article  CAS  Google Scholar 

  • Kleinmann G, Larson S, Hunter B, Stevens S, Mamalis N, Olson RJ (2007) Collagen shields as a drug delivery system for the fourth-generation fluoroquinolones. Ophthalmologica 221(1):51–56

    Article  CAS  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267(15):4878–4887. doi:10.1046/j.1432-1327.2000.01547.x

    Article  CAS  Google Scholar 

  • Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q, Zheng M (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7(7):968–977. doi:10.7150/ijbs.7.968

    Article  CAS  Google Scholar 

  • Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):1–24. doi:10.1101/cshperspect.a005058

    Google Scholar 

  • Müller WG, Eckert C, Kropf K, Wang X, Schloßmacher U, Seckert C, Wolf S, Tremel W, Schröder H (2007) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res 329(2):363–378. doi:10.1007/s00441-007-0402-x

    Article  Google Scholar 

  • Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33(1):7–21. doi:10.3109/07853890109002055

    Article  CAS  Google Scholar 

  • Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J (2009) Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17β-estradiol-hemihydrate. Drugs Dev Ind Pharm 35(9):1035–1042. doi:10.1080/03639040902755213

    Article  CAS  Google Scholar 

  • Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115(22):4201–4214. doi:10.1242/jcs.00106

    Article  CAS  Google Scholar 

  • Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol 53(7):430–442. doi:http://dx.doi.org/10.1016/j.patbio.2004.12.024

    Article  CAS  Google Scholar 

  • Rössler B, Kreuter J, Ross G (1994) Effect of collagen microparticles on the stability of retinol and its absorption into hairless mouse skin in vitro. Pharmazie 49(2–3):175–179

    Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14(13):2022–2031. doi:10.1096/fj.00-0043com

    Article  Google Scholar 

  • Silver FH (2009) The importance of collagen fibers in vertebrate biology. J Eng Fiber Fabr 4(2):9–17

    CAS  Google Scholar 

  • Söder S, Pöschl E (2004) The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem Biophys Res Commun 325(1):276–280. doi:http://dx.doi.org/10.1016/j.bbrc.2004.10.034

    Article  Google Scholar 

  • Söderhäll C, Marenholz I, Kerscher T, Rüschendorf F, Esparza-Gordillo J, Worm M, Gruber C, Mayr G, Albrecht M, Rohde K, Schulz H, Wahn U, Hubner N, Lee Y-A (2007) Variants in a novel epidermal collagen gene COL29A1 are associated with atopic dermatitis. PLoS Biol 5(9):e242. doi:10.1371/journal.pbio.0050242

    Article  Google Scholar 

  • Swatschek D, Schatton W, Kellermann J, Müller WEG, Kreuter J (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53(1):107–113. doi:http://dx.doi.org/10.1016/S0939-6411(01)00192-8

    Article  CAS  Google Scholar 

  • Takezawa T, Takeuchi T, Nitani A, Takayama Y, Kino-oka M, Taya M, Enosawa S (2007) Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. J Biotechnol 131(1):76–83. doi:http://dx.doi.org/10.1016/j.jbiotec.2007.05.033

    Google Scholar 

  • Timpl R, Wiedemann H, Van Delden V, Furthmayr H, KÜHn K (1981) A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120(2):203–211. doi:10.1111/j.1432-1033.1981.tb05690.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DSK thanks the director of the Indian Institute of Technology Hyderabad for providing facilities to accomplish the present book chapter. KS expresses her sincere thanks to the principal and the management of RVR & JC College of Engineering for their continued support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devarai Santhosh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sobha, K., Kumar, D.S. (2016). Chemistry and Biology of Marine Sponge Collagens. In: Pallela, R., Ehrlich, H. (eds) Marine Sponges: Chemicobiological and Biomedical Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2794-6_19

Download citation

Publish with us

Policies and ethics