Skip to main content

Proteoglycans from Marine Sponges and Their Biomedical Applications

  • Chapter
  • First Online:
Marine Sponges: Chemicobiological and Biomedical Applications

Abstract

Marine sponges are the simplest and earliest multicellular organisms, proteoglycans originating from the extracellular milieu fastened to the cell membrane. The extracellular space in the tissues of multicellular creatures is blocked through a gel-like substance, called the extracellular matrix, or the ground substance, which grasps the cells collectively and affords a permeable pathway for the dissemination of nutrients and oxygen to individual cells. The extracellular matrix is compiled of an intermingling network of heteropolysaccharides and fibrous connective tissue proteins such as collagen, elastin, fibronectin, and laminin. The glycosaminoglycans (GAG) are a family of linear polymeric heteropolysaccharides composed of duplicating disaccharide units. To investigate the isolation of proteoglycans and their structure has been intended, by means of chromatography, to mimic the function of proteoglycans in the multicellular adhesion of the marine sponge. The interaction of proteoglycans with GAG is not based on electrostatic communication. In addition, the interaction of proteins with GAG may have potential significant implications for biomedical roles including anticoagulant, antibacterial, antiviral, anti-inflammatory, and so on, and as an alternative therapeutic agent in the field of biochemical/pharmacological/microbial/molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AS, Matsuda M, Shigeta S, Okutani K (1999) Revelation of antiviral activities by artificial sulfation of a glycosaminoglycan from a marine Pseudomonas. Mar Biotechnol 6(1):102–106

    Article  Google Scholar 

  • Alvarez-Dominguez CVBJ, Marin CE, Mato LP, Cobian FL (1997) Host cell heparin sulfate proteoglycans mediate attachement and entry of Listeria monocytogenes, and the listerial surface protein Act A is involved in heparin sulfate receptor recognition. Infect Immunol 65(1):78–88

    CAS  Google Scholar 

  • Amornrut C, Toida T, Imanari T, Woo ER, Park H, Linhardt R, Wu SJ, Kim YS (1999) A new sulfated beta-galactan from clams with anti- HIV activity. Carbohydr Res 321(1–2):121–127

    Article  CAS  Google Scholar 

  • Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunomodulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6(1):8–13

    Article  CAS  Google Scholar 

  • Arena A, Gugliandol C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3–72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    Article  CAS  Google Scholar 

  • Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim S-K (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorg Med Chem 16(17):7921–7926

    Article  CAS  Google Scholar 

  • Azevedoa LA, Perazaa GG, Lernerb C, Soaresc A, Murciad N, Baisch ALM (2008) Investigation of the anti-inflammatory and analgesic effects from an extract of Aplysina caissara, a marine sponge. Fundam Clin Pharmacol 22(5):549–556

    Article  CAS  Google Scholar 

  • Beress A, Wassermann O, Bruhn T, Beres L, Kraiselburd EN, Gonzalez LV, de Motta GE, Chavez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56(4):478–488

    Article  CAS  Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, New York, p 114

    Google Scholar 

  • Boyd MR, Gustafson K, McMahon J, Shoemaker R (1996) Discovery of cyanovirin-N, a novel HIV-inactivating protein from Nostoc ellipsosporum that targets viral gp120. Int Conf AIDS 11:71

    Google Scholar 

  • Bucior I, Burger MM (2004) Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition. Glycoconj J 21(3–4):111–123

    Article  CAS  Google Scholar 

  • Cassaro CM, Dietrich CP (1977) Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem 252(7):2254–2261

    CAS  Google Scholar 

  • Chairman K, Jeyamala M, Sankar S, Murugan A, Singh R (2013) Immunomodulating properties of bioactive compounds present in Aurora globostellata. Int J Mar Sci 3(19):151–157

    Google Scholar 

  • Chang L, Whittaker NF, Bewley CA (2003) Crambescidin 826 and dehydrocrambine A: new polycyclic guanidine alkaloids from the marine sponge Monanchora sp. that inhibit HIV-1 fusion. J Nat Prod 66(11):1490–1494

    Article  CAS  Google Scholar 

  • Chill L, Rudi A, Aknin M, Loya S, Hizi A, Kashman Y (2004) New sesterterpenes from Madagascan Lendenfeldia sponges. Tetrahedron 60(47):10619–10626

    Article  CAS  Google Scholar 

  • Cimino P, Bifulco G, Casapullo A, Gomez-Paloma L, Riccio R (2001) Isolation and NMR characterization of rosacelose, a novel sulfated polysaccharide from the sponge Myxilla rosacea. Carbohydr Res 334(1):39–47

    Article  CAS  Google Scholar 

  • Cirne-Santos CC, Souza TM, Teixeira VL, Fontes CF, Rebello MA, Castello-Branco LR, Abreu CM, Tanuri A, Frugulhetti IC, Bou-Habib DC (2008) The dolabellane diterpene dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Res 77(1):64–71

    Article  CAS  Google Scholar 

  • Comin MJ, Maier MS, Roccatagliata AJ, Pujol CA, Damonte EB (1999) Evaluation of the antiviral activity of natural sulfated polyhydroxysteroids and their synthetic derivatives and analogs. Steroids 64(5):335–340

    Article  CAS  Google Scholar 

  • Cooper S, Bennett W, Andrade J, Reubinoff BE, Thomson J, Martin FP (2002) Biochemical properties of a keratin sulfate/chondroitin sulfate proteoglycan expressed in primate pluripotent stem cell. J Anat 200(Pt3):259–265

    Article  CAS  Google Scholar 

  • Cosmi B, Fredenburgh JC, Rischke J (1997) Effect of nonspecific binding to plasma proteins on the antithrombin activities of unfractionated heparin, low-molecular-weight heparin and dermatan sulfate. Circulation 95(1):118–124

    Article  CAS  Google Scholar 

  • da Frota ML Jr, Braganhol E, Canedo AD, Klamt F, Apel MA, Mothes B, Lerner C, Bettestinini AM, Henriques A, Moreira JC (2009) Brazilian marine sponge Polymastia janeirensis induces apoptotic cell death in human U138MG glioma cell line, but not in a normal cell culture. Invest New Drugs 27(1):13–20

    Article  Google Scholar 

  • de Garilhe P, de Rudder J (1964) Effect of 2 arbinose nucleosides on the multiplication of herpes virus and vaccine in cell culture. C R Hebd Seances Acad Sci 259:2725–2728

    Google Scholar 

  • De Lira SP, Seleghim MH, Williams DE, Marion F, Hamill P, Jean F, Andersen RJ, Hajdu E, Nerlinck RGS (2007) A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis. J Braz Chem Soc 18(2):440–443

    Article  Google Scholar 

  • De Souza PH, Leao-Ferreira LR, Moussatche N, Teixeira VL, Cavalcanti DN, Da Costa LJ, Diaz R, Frugulhetii IC (2005) Effects of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis on HIV-1 reverse transcriptase. Planta Med 71(11):1019–1024

    Article  CAS  Google Scholar 

  • Devi P, Wahidulla S, Kamat T, D’Souza L (2011) Screening marine organisms for antimicrobial activity against clinical pathogens. Ind J Geo Mar Sci 40(3):338–346

    Google Scholar 

  • Dhinakaran I, Manohari V, Atchya B, Tamilselvi K, Lipton AP (2012) Antifungal and cytotoxic activities of some marine sponges collected from the South East Coast of India D. J Appl Pharm Sci 2(1):52–55

    Google Scholar 

  • Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 74(12):5716–5720

    Article  CAS  Google Scholar 

  • Ellithey MS, Lall N, Hussein AA, Meyer D (2014) Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms. BMC Complement Altern Med 14:77

    Article  Google Scholar 

  • Esteves AIS, Nicolai M, Humanes M, Goncalves J (2011) Sulfated polysaccharides in marine sponges: extraction methods and anti-HIV activity. Mar Drugs 9(1):139–153

    Article  CAS  Google Scholar 

  • Falshaw R, Furneaux RH, Slim GC (1999) In: Finch P (ed) Carbohydrate sulphates carbohydrates structures, syntheses and dynamics, 1st edn. Springer science + Business media, Dordrecht, pp 107–141

    Google Scholar 

  • Ferreira EG, Wilke DV, Jimenez PC, Portela TA, Silveira ER, Hajdu E Pessoa C, de Moraes MO, Lotufo LVC (2007) Cytotoxic activity of hydroethanolic extracts of sponges (Porifera) collected at Pedra da Risca do Meio Marine State Park, Ceara State, Brazil. In: Custodio, M.R., Lobo- Hajdu, G., Hajdu, E. & Muricy, G. (Eds.)Porifera research: biodiversity, innovation and sustainability, Serie Livros, 28, Museu Nacional, Rio de Janeiro, pp 313–318

    Google Scholar 

  • Ford PW, Gustafson KR, McKee TC, Shigematsu N, Maurizi LK, Pannell LK, Williams DE, de Silva ED, Lassota P, Allen TM, Soest RV, Andersen RJ, Boyd MR (1999) Papuamides A–D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc 121(25):5899–5909

    Article  CAS  Google Scholar 

  • Goding JW (1993) Monoclonal antibodies: principles and practice: production and application, 2nd edn. Academic Press Limited, San Diego

    Google Scholar 

  • Grant AC, Linhardt RJ, Fitzgerald G, Park JJ, Langer R (1984) Metachromatic activity of heparin and heparin fragments. Anal Biochem 137(1):25–32

    Article  CAS  Google Scholar 

  • Guerardel Y, Czeszak X, Sumanovski LT, Karamanos Y, Popescu O, Strecker G, Misevic GN (2004) Molecular fingerprinting of carbohydrate structure phenotypes of three porifera proteoglycan like glyconectins. J Biol Chem 279(15):15591–15603

    Article  CAS  Google Scholar 

  • Guimaraes TR, Quiroz CG, Rigotto C, de Oliveira SQ, de Almeida MTR, Bianco EM, Moritz MIG, Carraro JL, Palermo JA, Cabrera G, Schenkel EP, Reginatto FH, Simoes CMO (2013) Anti HSV-1 activity of halistanol sulfate and halistanol sulfate C isolated from Brazilian marine sponge Petromica citrina (Demospongiae). Mar Drugs 11(11):4176–4192

    Article  CAS  Google Scholar 

  • Guo Z, Boons ZJ (2009) Carbohydrate-based vaccines and immunotherapies, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GM, Boyd MR (1989a) AIDS – antiviral sulfolipids from cyanobacteria (blue–green algae). J Natl Cancer Inst 81(16):1254–1258

    Article  CAS  Google Scholar 

  • Gustafson KR, Roman M, Fenical W (1989b) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111(19):7519–7524

    Article  CAS  Google Scholar 

  • Harlow E, Lane D (1998) Antibodies: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG (2001) Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc Natl Acad Sci 98(16):9419–9424

    Article  CAS  Google Scholar 

  • Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int J Biol Macromol 17(5):293–297

    Article  CAS  Google Scholar 

  • Hayashi T, Hayashi K, Maed M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue–green alga Spirulina platensis. J Nat Prod 59(1):83–87

    Article  CAS  Google Scholar 

  • Hellio C, Tsoukatou M, Maréchal JP, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V (2005) Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus Amphitrite. Mar Biotechnol 7(4):297–305

    Article  CAS  Google Scholar 

  • Hirsh J (1992) Overview of low molecular weight heparins and heparinoids: basic and clinical aspects. Aust N Z J Med 22(5):487–495

    CAS  Google Scholar 

  • Holick MF, Judkiewicz A, Walworth N, Wang MH (1985) Recovery of heparin from fish wastes. In: Colwell RR, Pariser ER, Sinskay AJ (eds) Biotechnology of marine polysaccharides. Hemisphere Publishing Corporation, New York, pp 389–397

    Google Scholar 

  • Hooper JNA (1995) Sponge guide. Queensland Museum, Queensland

    Google Scholar 

  • Hooper JNA, van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Horwitz JP, Chua J, Noel M (1964) The monomesylates of 1-(2-deoxy-dlyxofuranosyl) thymidine. J Org Chem 29:2076–2078

    Article  CAS  Google Scholar 

  • Hovingh P, Linker A (1982) An unusual heparan sulfate isolated from lobsters (Homarus americanus). J Biol Chem 257(16):9840–9844

    CAS  Google Scholar 

  • Hovingh P, Linker A (1998) Glycosaminoglycans in two mollusks, Aplysia californica and Helix aspersa, and in the leech, Nephelopsis obscura. Biochem Mol Biol 119(4):691–696

    Article  Google Scholar 

  • Hutagalung RA, Victor, Karjadidjaja M, Prasasty VD, Mulyono N (2014) Extraction and characterization of bioactive compounds from cultured and natural sponge, Haliclona molitba and Stylotella aurantium origin of Indonesia. Int J Biosci Biochem Bioinforma 4(1):14–18

    Google Scholar 

  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55(6):1049–1053

    CAS  Google Scholar 

  • Iwashima M, Mori J, Ting X, Matsunaga T, Hayashi K, Shinoda D, Saito H, Sankawa U, Hayashi T (2005) Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biol Pharm Bull 28(2):374–377

    Article  CAS  Google Scholar 

  • Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71(2):481–539

    CAS  Google Scholar 

  • Jarchow J, Fritz J, Anselmetti D, Calabro A, Hascall VC, Gerosa D, Burger MM, Busquets XF (2000) Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. J Struct Biol 132(2):95–105

    Article  CAS  Google Scholar 

  • Joseph B, Sujatha S, Jeevitha MV (2010) Screening of pesticidal activities of some marine sponge extracts against chosen pests. J Biopest 3(2):495–498

    Google Scholar 

  • Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  CAS  Google Scholar 

  • Laurent TC, Tengblad A, Thunberg L, Hook M, Lindahl U (1978) The molecular-weight dependence of the anti-coagulant activity of heparin. Biochem J 175:691–701

    Article  CAS  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465

    Article  CAS  Google Scholar 

  • Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29(10):2135–2139

    Article  CAS  Google Scholar 

  • Li C, Chen J, Hua T (1998) Precambrian sponges with cellular structures. Science 279(5352):879–882

    Article  CAS  Google Scholar 

  • Loya S, Hizi A (1993) The interaction of illimaquinone, a selective inhibitor of the RNase H activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses. J Biol Chem 268(13):9323–9328

    CAS  Google Scholar 

  • Loya S, Rudi A, Kashman Y, Hizi A (2002) Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases. Biochem J 362(Pt3):685–692

    Article  CAS  Google Scholar 

  • Lu CX, Li J, Sun YX, Qi X, Wang QJ, Xin XL, Geng MY (2007) Sulfated polymannuroguluronate, a novel anti-AIDS drug candidate, inhibits HIV-1 Tatinduced angiogenesis in Kaposi’s sarcoma cells. Biochem Pharmacol 74(9):1330–1339

    Article  CAS  Google Scholar 

  • Marinho PR, Muric GRS, Silva MFL, Marval MG, Laport MS (2008) Antibiotic-resistant bacteria inhibited by extracts and fractions from Brazilian marine sponges. Braz J Pharmacogn 20(2):267–275

    Article  Google Scholar 

  • Marinho PR, Simas NK, Kuster RM, Duarte RS, Fracalanzza SE, Ferreira DF, Romanos MT, Muricy G, Giambiagi-Demarval M, Laport MS (2012) Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. J Antimicrob Chemother 67(10):2396–2400

    Article  CAS  Google Scholar 

  • Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejias EG, Pujol CA, Zuniga EA (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 340(15):2392–2402

    Article  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (2006) Principles of medical biochemistry. Elsevier Health Sciences, Philadelphia, pp 243

    Google Scholar 

  • Menozzi F, Mutombo R, Renauld G, Gantiez C, Hannah J, Leininger E, Brennan MJ, Locht C (1994) Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesion of Bordetella pertussis. Infect Immunol 62(3):767–788

    Google Scholar 

  • Misevic GN, Guerardel Y, Sumanovski LT, Slomianny MC, Demarty M, Ripoll C, Karamanos Y, Maes E, Popescu O, Strecker G (2004) Molecular recognition between glyconectins as an adhesion self-assembly pathway to multicellularity. J Biol Chem 279:15579–15590

    Article  CAS  Google Scholar 

  • Misevic GN, Ripoll C, Norris J, Norris V, Guerardel Y, Maes E (2007) Evolution of multicellularity in Porifera via self-assembly of glyconectin carbohydrates. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro

    Google Scholar 

  • Moen LK, Clark GF (1993) A novel reverse transcriptase inhibitor from Fucus vesiculosus. Int Conf AIDS 9:145–161

    Google Scholar 

  • Monks NR, Lerner C, Henriques AT, Farias FM, Schaopoval EES, Suyenaga ES, Rocha AB, Schwartsmann G, Mothes B (2002) Anticancer, antichemotactic and antimicrobial activities of marine sponges collected off the coast of Santa Catarina, southern Brazil. J Exp Mar Biol Ecol 281(1–2):1–12

    Article  Google Scholar 

  • Mori T, O’Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280(10):9345–9353

    Article  CAS  Google Scholar 

  • Muller WEG, Maidhof A, Zahn RK, Schroder HC, Gasic MJ, Heidemann D, Bernd A, Kurelec B, Eich E, Seibert G (1985) Potent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res 45:4822–4826

    CAS  Google Scholar 

  • Muller WEG, Sobe C, Diehl-Seifert B, Maidhof A, Schroder HC (1987) Influence of the antileukemic and anti-human immunodeficiency virus agent avarol on selected immune responses in vitro and in vivo. Biochem Pharmacol 36(9):1489–1494

    Article  CAS  Google Scholar 

  • Muricy G, Hajdu E, Araujo FV, Hagler AN (1993) Antimicrobial activity of southwestern Atlantic shallow-water marine sponges Porifera. Sci Mar 57(4):427–432

    Google Scholar 

  • Nakao Y, Takada K, Matsunaga S, Fusetani N (2001) Calyceramides A–C: neuraminidase inhibitory sulfated ceramides from the marine sponge Discodermia calyx. Tetrahedron 57:3013–3017

    Article  CAS  Google Scholar 

  • Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987a) Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 31(10):1524–1528

    Article  CAS  Google Scholar 

  • Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987b) Antiretroviral activity in a marine red alga: reverse transcriptase inhibition by an aqueous extract of Schizymenia pacifica. J Cancer Res Clin Oncol 113(5):413–416

    Article  CAS  Google Scholar 

  • Newbold RW, Jensen PR, Fenical W, Pawlik JR (1999) Antimicrobial activity of Caribbean sponge extracts. Aquat Microb Ecol 19:279–284

    Article  Google Scholar 

  • Oku N, Gustafson KR, Cartner LK, Wilson JA, Shigematsu N, Hess S, Pannell LK, Boyd MR, McMahon JB (2004) Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J Nat Prod 67(8):1407–1411

    Article  CAS  Google Scholar 

  • Pape PL, Zidane M, Abdala H, More MT (2000) A glycoprotein isolated from the sponge Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol Int 24(1):51–56

    Article  Google Scholar 

  • Parrish CR, Jakobsen KB, Coombe DR, Bacic A (1991) Isolation and characterization of cell adhesions molecules from the marine sponge Ophlitaspongia tenius. Biochim Biophys Acta 1073(1):56–64

    Article  Google Scholar 

  • Pavao MSG, Aiello KRM, Werneck CC, Silva LCF, Valente AP, Mulloy B, Colwell NS, Tollefsen DM, Mourao PAS (1998) Highly sulfated dermatan sulfates from ascidians. J Biol Chem 273(43):27848–27857

    Article  CAS  Google Scholar 

  • Pereira HS, Leao-Ferreira LR, Moussatche N, Teixeira VL, Cavalcanti DN, Costa LJ, Diaz R, Frugulhetti IC (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antivir Res 64(1):69–76

    CAS  Google Scholar 

  • Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA (2007) Mirabamides A–D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 70(11):1753–1760

    Article  CAS  Google Scholar 

  • Popescu O, Misevic GN (1997) Self-recognition by proteoglycans. Nature 386:231–232

    Article  CAS  Google Scholar 

  • Prado MP, Torres YR, Berlinck RGS, Desidera C, Sanchez MA, Craveiro MV, Hajdu E, da Rocha RM, Machado-Santelli GM (2004) Effects of marine organisms extracts on microtubule integrity and cell cycle progression in cultured cells. J Exp Mar Biol Ecol 313(1):125–137

    Article  Google Scholar 

  • Purushottama GB, Venkateshvaran K, Pani Prasad K, Nalini P (2009) Bioactivities of extracts from the marine sponge Halichondria panacea. J Venom Anim Toxins Incl Trop Dis 15(3):444–459

    Article  Google Scholar 

  • Putten JPDT, Cole R (1998) Entry of OpaA1 gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 29(1):369–379

    Article  Google Scholar 

  • Rangel M, Sanctis B, Freitas JC, Polatto JM, Granato AC, Berlinck RG, Hajdu E (2001) Cytotoxic and neurotoxic activities in extracts of marine sponges (Porifera) from southeastern Brazilian coast. J Exp Mar Biol Ecol 262(1):31–40

    Article  CAS  Google Scholar 

  • Rao JV, Usman PK, Kumar JB (2008) Larvicidal and insecticidal properties of some marine sponges collected in Palk Bay and Gulf of Mannar waters. Afr J Biotechnol 7(2):109–113

    Google Scholar 

  • Rashid MA, Gustafson KR, Cartner LK, Shigematsu N, Pannell LK, Boyd MR (2001) Microspinosamide, a new HIVinhibitory cyclic depsipeptide from the marine sponge Sidonops microspinosa. J Nat Prod 64(1):117–121

    Article  CAS  Google Scholar 

  • Reddy MV, Rao MR, Rhodes D, Hansen MS, Rubins K, Bushman FD, Venkateshwarlu Y, Faulkner DJ (1999) Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J Med Chem 42(11):1901–1907

    Article  CAS  Google Scholar 

  • Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S (2013) Larvicidal, ovicidal, and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus say and Aedes aegypti L. (Diptera: Culicidae) ISRN Entomol 2013:1–8

    Google Scholar 

  • Reintamm T, Lopp A, Kuusksalu A, Pehk T, Kelve M (2003) ATP N-glycosidase A novel ATP-converting activity from a marine sponge Axinella polypoides. Eur J Biochem 270(20):4122–4132

    Article  CAS  Google Scholar 

  • Rodriguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC (2005) Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr Res 340(18):2742–2751

    Article  CAS  Google Scholar 

  • Rostand KSEJ (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65(1):1–8

    CAS  Google Scholar 

  • Rowley DC, Hansen MS, Rhodes D, Sotriffer CA, Ni H, McCammon JA, Bushman FD, Fenical W (2002) Thalassiolins A–C: new marine derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10(11):3619–3625

    Article  CAS  Google Scholar 

  • Rudd TR, Skidmore MA, Guerrini M, Hricovini M, Powell AK, Siligardi G, Yates EA (2010) The conformation and structure of GAGs: recent progress and perspectives. Curr Opin Struct Biol 20(5):567–674

    Article  CAS  Google Scholar 

  • Rudi A, Yosief T, Loya S, Hizi A, Schleyer M, Kashman Y (2001) Clathsterol, a novel anti-HIV-1 RT sulfated sterol from the sponge Clathria species. J Nat Prod 64(11):1451–1453

    Article  CAS  Google Scholar 

  • Rutzler K (2004). Sponges on coral reefs: a community shaped by competitive cooperation. In M Pansini, R Pronzato, G Bavestrello, R Manconi, eds. Sponge science in the new millennium. Genova, Italy: Boll Mus Ist Biol Univ Genova, 68, 85–148

    Google Scholar 

  • Saravanan R, Shanmugam A (2010) Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusk Amussium pleuronectus (Linne) using chromatography. Appl Biochem Biotechnol 160(3):791–799

    Article  CAS  Google Scholar 

  • Saravanan R, Shanmugam A (2011) Is isolation and characterization of heparan sulfate from marine scallop Amussium pleuronectus (Linne) an alternative source of heparin?!! Carbohydr Polym 86(2):1082–1084

    Article  CAS  Google Scholar 

  • Seleghim MHR, Lira SP, Kossuga MH, Batista T, Berlinck RGS, Hajdu E, Muricy G, da Rocha RM, do Nascimento GGF, Silva M, Pimenta EF, Theimann OH, Oliva G, Cavalcanti BC, Pessoa C, de Moraes MO, Galetti FCS, Silva CL, de Souza AO, Peixinho S (2007) Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev Bras Farmacogn 17(3):287–318

    Article  CAS  Google Scholar 

  • Sepcic K, Kauferstein S, Mebs D, Turk T (2010) Biological activities of aqueous and organic extracts from tropical Marine sponges. Mar Drugs 8(5):1550–1566

    Article  CAS  Google Scholar 

  • Silbert JE, Bernfield M, Kokenyesi R (1997) Proteoglycans: a special class of glycoproteins. In: Montrevil J, Vliegentharc JFG, Schachter J (eds) Glycoproteins II. Elsevire, Oxford, pp 1–31

    Chapter  Google Scholar 

  • Silva AC, Kratz JM, Farias FM, Henriques AT, Santos JD, Leonel RM, Lerner C, Mothes B, Barardi CR, Simoes CM (2006) In vitro antiviral acticity of marine sponges collected off Brazilian coast. Biol Pharm Bull 29(1):135–140

    Article  Google Scholar 

  • Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7(3):142–162

    Article  CAS  Google Scholar 

  • Sonia AS, Lipton AP, Raj RP (2009) Lethal concentration of methanol extract of sponges to the brine shrimp, Artemia salina G. J Mar Biol Assoc 51(1):122–125

    Google Scholar 

  • Stead P, Hiscox S, Robinson PS, Pike NB, Sidebottom PJ, Roberts AD, Nicholas WL, Wright AE, Pompony SA, Langley D (2000) Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg Med Chem Lett 10(7):661–664

    Article  CAS  Google Scholar 

  • Sujatha S, Joseph B (2011) Effect of few marine sponges and its biological activity against Aedes aegypti Linn. Musca domestica (Linnaeus, 1758) (Diptera: Culicidae). J Fish Aquat Sci 6(2):170–177

    Article  Google Scholar 

  • Sun HH, Cross SS, Gunasekera M, Koehn FE (1991) Weinbersteroldisulfates A and B, antiviral steroid sulfates from the sponge Petrosia weinbergi. Tetrahedron 47:1185–1190

    Article  CAS  Google Scholar 

  • Talarico LB, Duarte ME, Zibetti RG, Noseda MD, Damonte EB (2007) An algal derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 73(14):1464–1468

    Article  CAS  Google Scholar 

  • Tersariol IL, Ferreira TM, Medeiros MG, Porcionatto MA, Moraes CT, Abreu LR, Nader HB, Dietrich CP (1994) Sequencing of heparan sulfate proteoglycans: identification of variable and constant oligosaccharide regions in eight heparan sulfate proteoglycans of different origins. Braz J Med Biol Res 27(9):2097–2102

    CAS  Google Scholar 

  • Uzair B, Mahmood Z, Tabassum S (2011) Antiviral activity of natural products extracted from marine organisms. Bio Impacts 1(4):203–211

    Google Scholar 

  • Van de Westerlo EM, Smetsers TF, Dennissen MA, Linhardt RJ, Veerkamp JH, van Muijen GNP, Van Kuppevelt TH (2011) Human single chain antibodies against heparin: selection, characterization and effect on coagulation. Blood 99(7):2427–2433

    Article  Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Hooper JNA, Rutzler K, de Voogd NJ, Alvarez B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Diaz MC, Cardenaz P (2008) World Porifera database http://www.marinespecies.org/porifera on 2015-05-26

  • Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Venkateshwar Goud T, Srinivasa Reddy N, Raghavendra Swamy N, Siva Ram T, Venkateswarlu Y (2003) Anti-HIV active petrosins from the marine sponge Petrosia similis. Biol Pharm Bull 26(1):1498–1501

    Article  Google Scholar 

  • Vilela-Silva AC, Werneck CC, Valente AP, Vacquier VD, Mourão PA (2001) Embryos of sea urchin Strongylocentrotus purpuratus synthesize a dermatan sulfate enriched in 4-O and 6-O-disulfated galactosamine units. Glycobiol 11(6):433–440

    Article  CAS  Google Scholar 

  • Volpi N (1993) “Fast moving” and “slow moving” heparins, dermatan sulfate, and chondroitin sulfate: qualitative and quantitative analysis by agarose-gel electrophoresis. Carbohydr Res 2(247):263–278

    Article  Google Scholar 

  • Volpi N (1994) Fractionation of heparin, dermatan sulfate, and chondroitin sulfate by sequential precipitation: a method to purify a single glycosaminoglycan species from a mixture. Anal Biochem 218(2):382–391

    Article  CAS  Google Scholar 

  • Volpi N (1996) Electrophoresis separation of glycosaminoglycans on nitrocellulose membranes. Anal Biochem 240(1):114–118

    Article  CAS  Google Scholar 

  • Volpi N (2005) Occurrence and structural characterization of heparin from mollusks-review. ISJ 2:6–16

    Google Scholar 

  • Warabi K, Hamada T, Nakao Y, Matsunaga S, Hirota H, Van Soest RWM, Fusetani N (2005) Axinelloside A, an unprecented highly sulfated lipopolysaaccharide inhibiting telomerase, from the marine sponge, Axinella infundibula. J Am Chem Soc 127(38):13262–13270

    Article  CAS  Google Scholar 

  • Wellington KD, Cambie RC, Rutledge PS, Bergquist PR (2000) Chemistry of sponges, 19: novel bioactive metabolites from Hamigera tarangaensis. J Nat Prod 63(1):79–85

    Article  CAS  Google Scholar 

  • Witvrouw M, Este JA, Mateu QME, Reymen D, Andrei G, Snoeck R, Ikeda S, Pauwels R, Bianchini NV, Desmyter J, De Ciercq E (1994) Antiviral activity of a sulfated polysaccharide extracted from the red seaweed Aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chem Chemother 5(5):297–303

    Article  CAS  Google Scholar 

  • Yalcın FN (2007) Biological activities of the marine sponge Axinella. Hacet Univ J Fac Pharm 27(1):47–60

    Google Scholar 

  • Yassine M, Shabbar A (2013) Screening a Mediterranean sponge Axinella verrucosa for antibacterial activity in comparison to some antibiotics. J Pharmacogn Phytochem 1(6):66–75

    Google Scholar 

  • Zidane M, Pondaven P, Roussakis C, Quemener B, More MT (1996) Pachymatismin: a novel cytotoxic factor from the marine sponge (Pachymatisma johnstonii). Comp Biochem Physiol 115(1):47–53

    Article  Google Scholar 

  • Zierer MS, Mourao PA (2000) A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr Res 328(2):209–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (RK) is gratefully acknowledged to Chettinad Academy of Research and Education for providing the JRF. The authors are thankful to Mr. Alexander Vincent, JRF, Chettinad Academy of Research & Education, Chennai, for the preparation of network model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Saravanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Karthik, R., Saravanan, R. (2016). Proteoglycans from Marine Sponges and Their Biomedical Applications. In: Pallela, R., Ehrlich, H. (eds) Marine Sponges: Chemicobiological and Biomedical Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2794-6_13

Download citation

Publish with us

Policies and ethics